Ensemble prediction experiments of the tracks of eight tropical cyclones occurring between 2004-2006 over the western Pacific have been performed by using MM5 with five cumulus parameterization schemes. The results sh...Ensemble prediction experiments of the tracks of eight tropical cyclones occurring between 2004-2006 over the western Pacific have been performed by using MM5 with five cumulus parameterization schemes. The results show that the predictions of the tracks of the tropical cyclones are sensitive to the selection of cumulus parameterization schemes. Each scheme has its own advantage and disadvantage, and the predications without cumulus parameterization schemes are not the worst, sometimes even better than the others. And all of the three ensemble methods improve the predictions of the tracks significantly, among which the ensemble method without parameterization schemes, the Grell, Betts-Miller and Kain-Fritsch schemes are the best.展开更多
In this study, the improved high-resolution regional climate model of the China National Climate Center (RegCM_NCC) is used to examine the sensitivity of the simulated circulation and rainfall during the South China...In this study, the improved high-resolution regional climate model of the China National Climate Center (RegCM_NCC) is used to examine the sensitivity of the simulated circulation and rainfall during the South China Sea summer monsoon (SCSSM) period during 1998 in an effort to compare to other cumulus param- eterization schemes. The investigation has indicated that the model is capable of simulating the seasonal march of the SCSSM and that the results were very sensitive to the choice of cumulus parameterization schemes. It seems that the Kuo cumulus parameterization scheme simulates the process of the SCSSM onset reasonably well, which can reproduce the onset timing and dramatic changes before and after the onset, especially the upper- and lower-level wind-fields. However, there are still some discrepancies between the simulations and observations. For example, the model can not completely simulate the intensity of the rainfall or the location of the western Pacific subtropical high as well as the feature of the rapid northward propagation of seasonal rain belt.展开更多
In this paper, we present the results from high-resolution numerical simulations of three heavy rainfall events over the Korean Peninsula. The numerical results show that the prediction accuracy for heavy rainfall eve...In this paper, we present the results from high-resolution numerical simulations of three heavy rainfall events over the Korean Peninsula. The numerical results show that the prediction accuracy for heavy rainfall events improved as horizontal resolution increased. The fine-grid precipitation fields were much closer to the real precipitation fields in the case of large synoptic forcing over the Korean Peninsula. In the case of large convective available potential energy and weak synoptic forcing, it seems that even when using a high resolution, the models still showed poor performance in reproducing the observed high precipitation amounts. However, activation of the cumulus parameterization scheme in the intermediate resolution of 9 km, even at a grid spacing of 3 km, had a positive impact on the simulation of the heavy rainfall event.展开更多
This study examines the effects of cumulus parameterizations and microphysics schemes on the track forecast of typhoon Nabi using the Weather Research Forecast model. The study found that the effects of cumulus parame...This study examines the effects of cumulus parameterizations and microphysics schemes on the track forecast of typhoon Nabi using the Weather Research Forecast model. The study found that the effects of cumulus parameterizations on typhoon track forecast were comparatively strong and the typhoon track forecast of Kain-Fritsch (KF) was superior to that of Betts-Miller (BM). When KF was selected, the simulated results would be improved if microphysics schemes were selected than otherwise. The results from Ferrier, WSM6, and Lin were very close to those in the best track. KF performed well with the simulations of the western extension and eastern contraction changes of a North Pacific high as well as the distribution and strength of the typhoon wind field.展开更多
A 5-level spectral AGCM (ImPKU-SLAGCM) is used to examine the sensitivity of the simulated results of the summer monsoon rainfall and circulation in East Asia to different cumulus parameterization schemes in the clima...A 5-level spectral AGCM (ImPKU-SLAGCM) is used to examine the sensitivity of the simulated results of the summer monsoon rainfall and circulation in East Asia to different cumulus parameterization schemes in the climatological-mean case and in the cases of weak and strong Asian summer monsoons, respectively. The results simulated with the Arakawa-Schubert's(hereafter A-S's), Kuo's and Manabe's cumulus parameterization schemes show that these simulated distributions of the summer monsoon rainfall and circulation in East Asia depend strongly on the cumulus parameterization schemes either in the climatological-mean case or in the cases of weak and strong Asian summer monsoons. From the simulated results, it might be shown that the Kuo scheme appears to be more suitable for the simulation of the summer monsoon rainfall and circulation in East Asia than the A-S scheme or the Manabe scheme, although the A-S scheme is somewhat better in the simulations of the tropical rainfall. This might be due to that the Kuo's cumulus parameterization scheme is able to reflect well the characteristics of rainfall cloud system in the East Asian summer monsoon region, where the rainfall system used to be a mixing of cumulus and stratus.展开更多
Madden-Julian Oscillations (MJO) in six integrations using an AGCM with different cumulus parameterization schemes and resolutions are examined to investigate their impacts on the MJO simulation. Results suggest that ...Madden-Julian Oscillations (MJO) in six integrations using an AGCM with different cumulus parameterization schemes and resolutions are examined to investigate their impacts on the MJO simulation. Results suggest that the MJO simulation can be affected by both resolution and cumulus parameterization, though the latter, which determines the fundamental ability of the AGCM in simulating the MJO and the characteristics of the simulated MJO, is more crucial than the former. Model resolution can substantially affect the simulated MJO in certain aspects. Increasing resolution cannot improve the simulated MJO substantially, but can significantly modulate the detailed character of the simulated MJO; meanwhile, the impacts of resolution are dependent on the cumulus parameterization, determining the basic features of the MJO. Changes in the resolution do not alter the nature of the simulated MJO but rather regulate the simulation itself, which is constrained by cumulus parameterization schemes. Therefore, the vertical resolution needs to be increased simultaneously. The vertical profile of diabatic heating may be a crucial factor that is responsible for these different modeling results. To a large extent, it is determined by the cumulus parameterization scheme used.展开更多
The effect of different cumulus parameterization schemes(CPSs) on precipitation over China is investigated by using the International Centre for Theoretical Physics(ICTP) Regional Climate Model version 4.3(Reg CM...The effect of different cumulus parameterization schemes(CPSs) on precipitation over China is investigated by using the International Centre for Theoretical Physics(ICTP) Regional Climate Model version 4.3(Reg CM-4.3) coupled with the land surface model BATS1e(Biosphere-Atmosphere Transfer Scheme version1e). The ERA-interim data are utilized to drive a group of simulations over a 31-yr period from September1982 to December 2012. Two typically sensitive regions, i.e., the eastern Tibetan Plateau(TP; 29°–38°N,90°–100°E) and eastern China(EC; 26°–32°N, 110°–120°E), are focused on. The results show that all the CPSs have well reproduced the spatial distribution of annual precipitation in China. The simulation with the Emanuel scheme shows an overall overestimation of precipitation in China, different from the other three CPSs which only overestimate over northern and northwestern China but underestimate over southern China. Seasonally, the Tiedtke scheme shows the smallest overestimation in winter and summer, and the best simulation of the annual variance of precipitation. Interannual variations of precipitation among the four CPSs are generally simulated better in summer than in winter, and better for entire China than in the subregions of TP and EC. The precipitation trend is simulated better over EC than over TP, and better in summer than in winter. An overestimate(underestimate) of the East Asian summer monsoon index(EASMI) exists in the simulations with the Grell and the Emanuel(the Kuo and the Tiedtke) schemes.The smallest EASMI bias in the Tiedtke simulation could explain its small precipitation bias. A negative correlation between the EASMI and summer precipitation over the middle and lower reaches of Yangtze River is found in the Grell and the Emanuel simulations, but was missed by the simulations using the Kuo and the Tiedtke schemes.展开更多
The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscillation) to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)-...The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscillation) to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)--SAMIL (Spectral Atmospheric Model of IAP LASG). Results show that performance of the model in simulating the MJO alters widely when using two different cumulus parameterization schemes-the moist convective adjustment scheme (MCA) and the Zhang-McFarlane (ZM) scheme. MJO simulated by the MCA scheme was found to be more realistic than that simulated by the ZM scheme. MJO produced by the ZM scheme is too weak and shows little propagation characteristics. Weak moisture convergence at low levels simulated by the ZM scheme is not enough to maintain the structure and the eastward propagation of the oscillation. These two cumulus schemes produced different vertical structures of the heating profile. The heating profile produced by the ZM scheme is nearly uniform with height and the heating is too weak compared to that produced by the MCA, which maybe contributes greatly to the failure of simulating a reasonable MJO. Comparing the simulated MJO by these two schemes indicate that the MJO simulated by the GCM is highly sensitive to cumulus parameterizations implanted in. The diabatic heating profile plays an important role in the performance of the GCM. Three sensitivity experiments with different heating profiles are designed in which modified heating profiles peak respectively in the upper troposphere (UH), middle troposphere (MH), and lower troposphere (LH). Both the LH run and the MH run produce eastward propagating signals on the intraseasonal timescale, while it is interesting that the intraseasonal timescale signals produced by the UH run propagate westward. It indicates that a realistic intraseasonal oscillation is more prone to be excited when the maximum heating concentrates in the middle-low levels, especially in the middle levels, while westward propagating disturbances are more prone to be produced when the maximum heating appears very high.展开更多
Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45...Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45 km. In order to verify two radiation schemes and four cumulus convection schemes, eight experiments are performed with different combinations of physics parameterization schemes. The results show that eight experiments present reasonable spatial patterns of surface air temperature and precipitation in boreal summer, with the spatial correlation coefficient (COR) between simulated and observed temperature exceeding 0.95, and that between simulated and observed precipitation ranges from 0.65 to 0.82. The four experiments with the RRTMG radiation scheme show a better performance than the other four experiments with the CAM radiation scheme. In the four experiments with the RRTMG radiation scheme, the COR between simulated and observed surface air temperature is about 0.98, and that between simulated and observed precipitation ranges from 0.76 to 0.82. Comparatively, the two experiments using the new Tiedtke cumulus parameterization scheme can simulate better diurnal variation of precipitation in boreal summer than the other six experiments. In particular, for the diurnal cycle of precipitation over land and ocean, the experiment using the RRTMG radiation scheme and the new Tiedtke cumulus convection scheme shows that the peaks of precipitation rate appear at 0400 LST and 1600 LST, in agreement with observation.展开更多
In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the ...In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas.展开更多
Typhoons,characterized by their high destructive potential,significantly impact coastal residents’lives and property safety.To optimize numerical models’typhoon simulation,carefully selecting appropriate physical pa...Typhoons,characterized by their high destructive potential,significantly impact coastal residents’lives and property safety.To optimize numerical models’typhoon simulation,carefully selecting appropriate physical para-meterization schemes is crucial,offering robust support for disaster prevention and reduction efforts.This study focuses on Typhoon Mujigae,conducting a comparative analysis of different physical parameterization schemes(microphysics,cu-mulus parameterization,shortwave radiation,and longwave radiation)in WRF simulations.The key findings are as follows:cumulus and microphysics parameterization schemes notably influence the simulation of typhoon tracks and intensity,while the impact of longwave and shortwave radiation schemes is relatively minor.Typhoon intensity is more sensitive to the choice of parameterization schemes than track.Together,the Kain-Fritsch cumulus convection scheme,WRF Single Moment 5-class scheme,and Dudhia/RRTM radiation scheme yield the best intensity simulation results.Compared with the Betts-Miller-Janjićand Grell 3D scheme,the use of the Kain-Fritsch scheme results in a clearer,taller eyewall and more symmetric deep convection,enhancing precipitation and latent heat release,and consequently improving the simulated typhoon intensity.More complex microphysics schemes like Purdue Lin,WRF Single Moment 5-class,and WRF Double Moment 6-class perform better in simulations,while simpler schemes like Kessler and WSM3 exhibit significant deviations in typhoon simulations.Particularly,the large amount of supercooled water clouds simulated by the Kessler scheme is a major source of bias.Furthermore,a coupling effect exists between cumulus convection and mi-crophysics parameterization schemes,and only a reasonable combination of both can achieve optimal simulation results.展开更多
Tropical Rainfall Measuring Mission (TRMM) data [TRMM Microwave Imager/Precipitation Radar/Visible and Infrared Scanner (TMI/PR/VIRS)] and a numerical model are used to investigate the structure and rainfall feature...Tropical Rainfall Measuring Mission (TRMM) data [TRMM Microwave Imager/Precipitation Radar/Visible and Infrared Scanner (TMI/PR/VIRS)] and a numerical model are used to investigate the structure and rainfall features of Tropical Cyclone (TC) Rammasun (2002). Based on the analysis of TRMM data, which are diagnosed together with NCEP/AVN [Aviation (global model)] analysis data, some typical features of TC structure and rainfall are preliminary discovered. Since the limitations of TRMM data are considered for their time resolution and coverage, the world observed by TRMM at sev- eral moments cannot be taken as the representation of the whole period of the TC lifecycle, therefore the picture should be reproduced by a numerical model of high quality. To better understand the structure and rainfall features of TC Rammasun, a numerical simulation is carried out with mesoscale model MM5 in which the validations have been made with the data of TRMM and NCEP/AVN analysis.展开更多
The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event i...The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event in North China that occurred during 20-21 December 2002. Thirteen experiments are performed to test the sensitivity of the simulation to the cloud physics with different cumulus parameterization schemes and different options for the Goddard cloud microphysics parameterization schemes. It is shown that the cumulus parameterization scheme has little to do with the simulation result. The results also show that there are only four classes of water substances, namely the cloud water, cloud ice, snow, and vapor, in the simulation of the moderate snowfall event. The analysis of the cloud microphysics budgets in the explicit experiment shows that the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow, and the Bergeron process of cloud ice are the dominant cloud microphysical processes in the simulation. The accretion of cloud water by snow and the deposition growth of the snow are equally important in the development of the snow.展开更多
Numerical simulations of two heavy rainfall cases in the Changjiang-Huaihe River basin are performed with TRMM/PR (precipitation radar) data incorporated into the PSU/NCAR meso scale model MM5. The mixing ratio of rai...Numerical simulations of two heavy rainfall cases in the Changjiang-Huaihe River basin are performed with TRMM/PR (precipitation radar) data incorporated into the PSU/NCAR meso scale model MM5. The mixing ratio of rainwater q <SUB>r</SUB> is obtained from the R −q <SUB>r</SUB> relation (R is the rainfall rate), and the mixing ratio of water vapor q <SUB>v</SUB> in the model is replaced by q <SUP>1</SUP>′<SUB>v</SUB> = q <SUB>v</SUB>+q <SUB>r</SUB>. Then, TRMM/PR data are used to modify humidity analysis obtained from conventional radiosonde data, and sensitivity experiments (STE) are performed and compared to control experiments (CTL). Results show that both the heavy rainfall distribution and its maximum amounts from STE are improved compared with those from CTL.展开更多
With a hybrid atmosphere-ocean coupled model we carried out an experimental forecast of a well documented Madden-Julian Oscillation (MJO) event that was observed during the period of Tropical Ocean Global Atmosphere C...With a hybrid atmosphere-ocean coupled model we carried out an experimental forecast of a well documented Madden-Julian Oscillation (MJO) event that was observed during the period of Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE). The observed event, originated in the western Indian Ocean around 6 January 1993, moved eastward with a phase speed of about 6.2 m s 1 and reached the dateline around February 1. The hybrid coupled model reasonably forecasts the MJO initiation in the western Indian Ocean, but the predicted MJO event propagates too slow (~ 4.4 m s 1 ). Results from previous observational studies using unprecedented humidity profiles obtained by NASA Aqua/AIRS satellite suggested that two potential physical processes may be responsible for this model caveat. After improving the cumulus parameterization scheme based on the observations, the model is able to forecast the same event one month ahead. Further sensitivity experiment confirms that the speed-up of model MJO propagation is primarily due to the improved convective scheme. Further, air-sea coupling plays an important role in maintaining the intensity of the predicted MJO. The results here suggest that MJO prediction skill is sensitive to model cumulus parameterization and air-sea coupling.展开更多
Cumulus convection is a key linkage between hydrological cycle and large-scale atmospheric circulation. Cumulus parameterization scheme is an important component in numerical weather and climate modeling studies. In t...Cumulus convection is a key linkage between hydrological cycle and large-scale atmospheric circulation. Cumulus parameterization scheme is an important component in numerical weather and climate modeling studies. In the Global/Regional Assimilation and Prediction Enhanced System (GRAPES), turbulent mixing and diffusion approach is applied in its shallow convection scheme. This method overestimates the vertical transport of heat and moisture fluxes but underestimates cloud water mixing ratio over the region of stratocumulus clouds. As a result, the simulated low stratocumulus clouds are less than observations. To overcome this problem, a mass flux method is employed in the shallow convection scheme to replace the original one. Meanwhile, the deep convection scheme is adjusted correspondingly. This modification is similar to that in the US NCEP Global Forecast System (GFS), which uses the simplified Arakawa Schubert Scheme (SAS). The planetary boundary layer scheme (PBL) is also revised by considering the coupling between the PBL and stratocumulus clouds. With the modification of both the cumulus and PBL schemes, the GRAPES simulation of shallow convective heating rate becomes more reasonable; total amounts of stratocumulus clouds simulated over the eastern Pacific and their vertical structure are more consistent with observations; the underestimation of stratocumulus clouds simulated by original schemes is less severe with the revised schemes. Precipitation distribution in the tropics becomes more reasonable and spurious precipitation is effectively suppressed. The westward extension and northward movement of the western Pacific subtropical high simulated with the revised schemes are more consistent with Final Operational Global Analysis (FNL) than that simulated with the original schemes. The statistical scores for the global GRAPES forecast are generally improved with the revised schemes, especially for the simulation of geopotential height in the Northern Hemisphere and winds in the tropics. Root mean square errors (RMSEs) decrease in the lower and upper troposphere with the revised schemes. The above results indicate that with the revised cumulus and PBL schemes, model biases in the tropics decrease and the global GRAPES performance is greatly improved.展开更多
Here discussed is the sensitivity of simulated typhoon track and intensity over the Northwest Pacific Ocean to different cumulus schemes.The results from the 20 typhoon cases during 2003-2008 show that the simulation ...Here discussed is the sensitivity of simulated typhoon track and intensity over the Northwest Pacific Ocean to different cumulus schemes.The results from the 20 typhoon cases during 2003-2008 show that the simulation of typhoon track and intensity are very sensitive to cumulus schemes.The relationship between simulations of typhoon track and cumulus schemes can be case dependent.Different best tracks obtained from different case studies depend on which cumulus scheme we chose.However,simulations of typhoon intensity exhibit different features.The Kain-Fritsch scheme simulation obtains the most intensive typhoon,whereas the Betts-Miller-Janjic scheme and the Grell-Devenyi scheme obtain weaker typhoons.The sensitivity of simulated typhoon track and intensity to different cumulus schemes is due mainly to different hypotheses and precipitation calculations.The difference of simulated large scale circulations using different cumulus schemes leads to the difference of typhoon tracks.The closer the simulations are compared to observations,the less the errors of simulated typhoon tracks.The difference of simulated typhoon intensity is due mainly to the difference of simulated vertical heating of the atmosphere.These lead to different strengths of convection which causes the difference of cumulus precipitation and latent heat.The KF scheme simulation obtains the strongest vertical convection,the obvious warm core structure,more cumulus precipitation,and stronger intensity.By contrast,the BMJ scheme and the GD scheme obtain weaker convection,less cumulus precipitation,and weaker intensity.展开更多
The sensitivity of a regional climate model (RCM) to cumulus parameterization (CUPA) schemes in modeling summer precipitation over East Asia has been investigated by using the fifth-generation Pennsylvania State U...The sensitivity of a regional climate model (RCM) to cumulus parameterization (CUPA) schemes in modeling summer precipitation over East Asia has been investigated by using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (PSU-NCAR MM5). The feasibility of physical ensemble and the effect of interior (spectral) nudging are also assessed. The RCM simulations are evaluated against the NCEP/NCAR reanalysis data and NCEP/CPC precipitation data for three summers (JJA) in 1991, 1998, and 2003. The results show that the RCM is highly sensitive to CUPA schemes. Different CUPA schemes cause distinctive characteristics in the modeling of JJA precipitation and the intraseasonal (daily) variability of regional precipitation. The sensitivity of the RCM simulations to the CUPA schemes is reduced by adopting the spectral nudging technique, which enables the RCM to reproduce more realistic large-scale circulations at the upper levels of the atmosphere as well as near the surface, and better precipitation simulation in the selected experiments. The ensemble simulations using different CUPA schemes show higher skills than individual members for both control runs and spectral nudging runs. The physical ensemble adopting the spectral nudging technique shows the highest downscaling skill in capturing the general circulation patterns for all experiments and improved temporal distributions of precipitation in some regions.展开更多
The sensitivity of simulated tropical intraseasonal oscillations (ISO) to different cumulus parameterization schemes was analyzed using an atmospheric general circulation model (latest version-SAMIL2.2.3) developed at...The sensitivity of simulated tropical intraseasonal oscillations (ISO) to different cumulus parameterization schemes was analyzed using an atmospheric general circulation model (latest version-SAMIL2.2.3) developed at the Laboratory for Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) at the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences.Results show that the basic features of tropical climatological intraseasonal oscillations (CISO) can be captured using all three cumulus schemes.The CISO simulated by the Tiedtke scheme was found to be more realistic than that of the Manabe and Zhang-McFarlane schemes.The results of simulated transient intraseasonal oscillations (TISO) indicate that although the Tiedtke and the Zhang-McFarlane schemes in the new version SAMIL2.2.3 have been adjusted according to different problems,only the latter can simulate the eastward propagation of the 27-50-day TISO mode.It may be associated with the more realistic diabatic heating profile simulated by the Zhang-McFarlane scheme.In addition,the Manabe scheme in SAMIL2.2.3 is the same as that in the prior version SAMIL2.08.However,some aspects of the physical process,such as the radiation scheme and aerosol condition,have been changed.Conversely the eastward propagation from 100°E to the west of the tropical 27-50-day TISO mode only can be simulated using the Manabe scheme of SAMIL 2.08.Consequently,not all the improvements of physical parameterization schemes work well in every respect.The coordinated developments between dynamic frame and physical processes,and among different physical processes,are important methods that may be used to improve the model.展开更多
基金Applied Research on Ensemble Forecast Using Multiple Parameterization Schemes, a NaturalScience Foundation project of Zhejiang Province (Y505286)
文摘Ensemble prediction experiments of the tracks of eight tropical cyclones occurring between 2004-2006 over the western Pacific have been performed by using MM5 with five cumulus parameterization schemes. The results show that the predictions of the tracks of the tropical cyclones are sensitive to the selection of cumulus parameterization schemes. Each scheme has its own advantage and disadvantage, and the predications without cumulus parameterization schemes are not the worst, sometimes even better than the others. And all of the three ensemble methods improve the predictions of the tracks significantly, among which the ensemble method without parameterization schemes, the Grell, Betts-Miller and Kain-Fritsch schemes are the best.
基金sponsored by the National Natural Science Foundation of China under Grant Nos.40531006 and 40576012 as well as"973 Program"2006CB403604.
文摘In this study, the improved high-resolution regional climate model of the China National Climate Center (RegCM_NCC) is used to examine the sensitivity of the simulated circulation and rainfall during the South China Sea summer monsoon (SCSSM) period during 1998 in an effort to compare to other cumulus param- eterization schemes. The investigation has indicated that the model is capable of simulating the seasonal march of the SCSSM and that the results were very sensitive to the choice of cumulus parameterization schemes. It seems that the Kuo cumulus parameterization scheme simulates the process of the SCSSM onset reasonably well, which can reproduce the onset timing and dramatic changes before and after the onset, especially the upper- and lower-level wind-fields. However, there are still some discrepancies between the simulations and observations. For example, the model can not completely simulate the intensity of the rainfall or the location of the western Pacific subtropical high as well as the feature of the rapid northward propagation of seasonal rain belt.
文摘In this paper, we present the results from high-resolution numerical simulations of three heavy rainfall events over the Korean Peninsula. The numerical results show that the prediction accuracy for heavy rainfall events improved as horizontal resolution increased. The fine-grid precipitation fields were much closer to the real precipitation fields in the case of large synoptic forcing over the Korean Peninsula. In the case of large convective available potential energy and weak synoptic forcing, it seems that even when using a high resolution, the models still showed poor performance in reproducing the observed high precipitation amounts. However, activation of the cumulus parameterization scheme in the intermediate resolution of 9 km, even at a grid spacing of 3 km, had a positive impact on the simulation of the heavy rainfall event.
基金National Basic Research Program of China (2009CB421502)National Natural Science Foundation of China (40475018)Research and Development Program of KMA of Korea (NIMR-2010-B-6)
文摘This study examines the effects of cumulus parameterizations and microphysics schemes on the track forecast of typhoon Nabi using the Weather Research Forecast model. The study found that the effects of cumulus parameterizations on typhoon track forecast were comparatively strong and the typhoon track forecast of Kain-Fritsch (KF) was superior to that of Betts-Miller (BM). When KF was selected, the simulated results would be improved if microphysics schemes were selected than otherwise. The results from Ferrier, WSM6, and Lin were very close to those in the best track. KF performed well with the simulations of the western extension and eastern contraction changes of a North Pacific high as well as the distribution and strength of the typhoon wind field.
文摘A 5-level spectral AGCM (ImPKU-SLAGCM) is used to examine the sensitivity of the simulated results of the summer monsoon rainfall and circulation in East Asia to different cumulus parameterization schemes in the climatological-mean case and in the cases of weak and strong Asian summer monsoons, respectively. The results simulated with the Arakawa-Schubert's(hereafter A-S's), Kuo's and Manabe's cumulus parameterization schemes show that these simulated distributions of the summer monsoon rainfall and circulation in East Asia depend strongly on the cumulus parameterization schemes either in the climatological-mean case or in the cases of weak and strong Asian summer monsoons. From the simulated results, it might be shown that the Kuo scheme appears to be more suitable for the simulation of the summer monsoon rainfall and circulation in East Asia than the A-S scheme or the Manabe scheme, although the A-S scheme is somewhat better in the simulations of the tropical rainfall. This might be due to that the Kuo's cumulus parameterization scheme is able to reflect well the characteristics of rainfall cloud system in the East Asian summer monsoon region, where the rainfall system used to be a mixing of cumulus and stratus.
基金National Natural Science Foundation of China (40805027 40675051)
文摘Madden-Julian Oscillations (MJO) in six integrations using an AGCM with different cumulus parameterization schemes and resolutions are examined to investigate their impacts on the MJO simulation. Results suggest that the MJO simulation can be affected by both resolution and cumulus parameterization, though the latter, which determines the fundamental ability of the AGCM in simulating the MJO and the characteristics of the simulated MJO, is more crucial than the former. Model resolution can substantially affect the simulated MJO in certain aspects. Increasing resolution cannot improve the simulated MJO substantially, but can significantly modulate the detailed character of the simulated MJO; meanwhile, the impacts of resolution are dependent on the cumulus parameterization, determining the basic features of the MJO. Changes in the resolution do not alter the nature of the simulated MJO but rather regulate the simulation itself, which is constrained by cumulus parameterization schemes. Therefore, the vertical resolution needs to be increased simultaneously. The vertical profile of diabatic heating may be a crucial factor that is responsible for these different modeling results. To a large extent, it is determined by the cumulus parameterization scheme used.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2010CB950503 and 2013CB956004)Research Fund for Climate Change of the China Meteorological Administration(CCSF201403)
文摘The effect of different cumulus parameterization schemes(CPSs) on precipitation over China is investigated by using the International Centre for Theoretical Physics(ICTP) Regional Climate Model version 4.3(Reg CM-4.3) coupled with the land surface model BATS1e(Biosphere-Atmosphere Transfer Scheme version1e). The ERA-interim data are utilized to drive a group of simulations over a 31-yr period from September1982 to December 2012. Two typically sensitive regions, i.e., the eastern Tibetan Plateau(TP; 29°–38°N,90°–100°E) and eastern China(EC; 26°–32°N, 110°–120°E), are focused on. The results show that all the CPSs have well reproduced the spatial distribution of annual precipitation in China. The simulation with the Emanuel scheme shows an overall overestimation of precipitation in China, different from the other three CPSs which only overestimate over northern and northwestern China but underestimate over southern China. Seasonally, the Tiedtke scheme shows the smallest overestimation in winter and summer, and the best simulation of the annual variance of precipitation. Interannual variations of precipitation among the four CPSs are generally simulated better in summer than in winter, and better for entire China than in the subregions of TP and EC. The precipitation trend is simulated better over EC than over TP, and better in summer than in winter. An overestimate(underestimate) of the East Asian summer monsoon index(EASMI) exists in the simulations with the Grell and the Emanuel(the Kuo and the Tiedtke) schemes.The smallest EASMI bias in the Tiedtke simulation could explain its small precipitation bias. A negative correlation between the EASMI and summer precipitation over the middle and lower reaches of Yangtze River is found in the Grell and the Emanuel simulations, but was missed by the simulations using the Kuo and the Tiedtke schemes.
基金the National Natural Science Foundation of China under Grant Nos.40575027 and 40675051the Project of Chinese Academy of Sciences(ZKCX-SW-226)
文摘The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscillation) to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)--SAMIL (Spectral Atmospheric Model of IAP LASG). Results show that performance of the model in simulating the MJO alters widely when using two different cumulus parameterization schemes-the moist convective adjustment scheme (MCA) and the Zhang-McFarlane (ZM) scheme. MJO simulated by the MCA scheme was found to be more realistic than that simulated by the ZM scheme. MJO produced by the ZM scheme is too weak and shows little propagation characteristics. Weak moisture convergence at low levels simulated by the ZM scheme is not enough to maintain the structure and the eastward propagation of the oscillation. These two cumulus schemes produced different vertical structures of the heating profile. The heating profile produced by the ZM scheme is nearly uniform with height and the heating is too weak compared to that produced by the MCA, which maybe contributes greatly to the failure of simulating a reasonable MJO. Comparing the simulated MJO by these two schemes indicate that the MJO simulated by the GCM is highly sensitive to cumulus parameterizations implanted in. The diabatic heating profile plays an important role in the performance of the GCM. Three sensitivity experiments with different heating profiles are designed in which modified heating profiles peak respectively in the upper troposphere (UH), middle troposphere (MH), and lower troposphere (LH). Both the LH run and the MH run produce eastward propagating signals on the intraseasonal timescale, while it is interesting that the intraseasonal timescale signals produced by the UH run propagate westward. It indicates that a realistic intraseasonal oscillation is more prone to be excited when the maximum heating concentrates in the middle-low levels, especially in the middle levels, while westward propagating disturbances are more prone to be produced when the maximum heating appears very high.
基金supported by the National Key Research Program of China [grant number 2016YFB0200805)the National Natural Science Foundation of China [grant number 41575089]
文摘Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45 km. In order to verify two radiation schemes and four cumulus convection schemes, eight experiments are performed with different combinations of physics parameterization schemes. The results show that eight experiments present reasonable spatial patterns of surface air temperature and precipitation in boreal summer, with the spatial correlation coefficient (COR) between simulated and observed temperature exceeding 0.95, and that between simulated and observed precipitation ranges from 0.65 to 0.82. The four experiments with the RRTMG radiation scheme show a better performance than the other four experiments with the CAM radiation scheme. In the four experiments with the RRTMG radiation scheme, the COR between simulated and observed surface air temperature is about 0.98, and that between simulated and observed precipitation ranges from 0.76 to 0.82. Comparatively, the two experiments using the new Tiedtke cumulus parameterization scheme can simulate better diurnal variation of precipitation in boreal summer than the other six experiments. In particular, for the diurnal cycle of precipitation over land and ocean, the experiment using the RRTMG radiation scheme and the new Tiedtke cumulus convection scheme shows that the peaks of precipitation rate appear at 0400 LST and 1600 LST, in agreement with observation.
基金supported by the National Natural Science Foundation of China(Grant Nos.42375153,42075151).
文摘In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas.
基金National Natural Science Foundation of China(42130605,72293604)Guangdong Basic and Applied Basic Research Foundation(2019B1515120018,2019A1515111009)+2 种基金Shenzhen Natural Science Foundation(JCYJ20210324131810029)Guangdong Provincial College Innovation Team Project(2019KCXTF021)First-Class Discipline Plan of Guangdong Province(080503032101,231420003)。
文摘Typhoons,characterized by their high destructive potential,significantly impact coastal residents’lives and property safety.To optimize numerical models’typhoon simulation,carefully selecting appropriate physical para-meterization schemes is crucial,offering robust support for disaster prevention and reduction efforts.This study focuses on Typhoon Mujigae,conducting a comparative analysis of different physical parameterization schemes(microphysics,cu-mulus parameterization,shortwave radiation,and longwave radiation)in WRF simulations.The key findings are as follows:cumulus and microphysics parameterization schemes notably influence the simulation of typhoon tracks and intensity,while the impact of longwave and shortwave radiation schemes is relatively minor.Typhoon intensity is more sensitive to the choice of parameterization schemes than track.Together,the Kain-Fritsch cumulus convection scheme,WRF Single Moment 5-class scheme,and Dudhia/RRTM radiation scheme yield the best intensity simulation results.Compared with the Betts-Miller-Janjićand Grell 3D scheme,the use of the Kain-Fritsch scheme results in a clearer,taller eyewall and more symmetric deep convection,enhancing precipitation and latent heat release,and consequently improving the simulated typhoon intensity.More complex microphysics schemes like Purdue Lin,WRF Single Moment 5-class,and WRF Double Moment 6-class perform better in simulations,while simpler schemes like Kessler and WSM3 exhibit significant deviations in typhoon simulations.Particularly,the large amount of supercooled water clouds simulated by the Kessler scheme is a major source of bias.Furthermore,a coupling effect exists between cumulus convection and mi-crophysics parameterization schemes,and only a reasonable combination of both can achieve optimal simulation results.
基金the National Natural Science Foundation of China(Grant Nos.49975014,40275018 , 40333025) National Social Development Research Progrannie granted by TheAfinistry of Science and Technology.
文摘Tropical Rainfall Measuring Mission (TRMM) data [TRMM Microwave Imager/Precipitation Radar/Visible and Infrared Scanner (TMI/PR/VIRS)] and a numerical model are used to investigate the structure and rainfall features of Tropical Cyclone (TC) Rammasun (2002). Based on the analysis of TRMM data, which are diagnosed together with NCEP/AVN [Aviation (global model)] analysis data, some typical features of TC structure and rainfall are preliminary discovered. Since the limitations of TRMM data are considered for their time resolution and coverage, the world observed by TRMM at sev- eral moments cannot be taken as the representation of the whole period of the TC lifecycle, therefore the picture should be reproduced by a numerical model of high quality. To better understand the structure and rainfall features of TC Rammasun, a numerical simulation is carried out with mesoscale model MM5 in which the validations have been made with the data of TRMM and NCEP/AVN analysis.
基金The authors benefited from discussions with Professors C.-H.Sui and Xu Huanbin.The comments of the three anonymous reviewers are acknowledged.This research was supported by the National Natural Science Foundation of China.(Grant Nos.40375036 and 40105006).
文摘The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event in North China that occurred during 20-21 December 2002. Thirteen experiments are performed to test the sensitivity of the simulation to the cloud physics with different cumulus parameterization schemes and different options for the Goddard cloud microphysics parameterization schemes. It is shown that the cumulus parameterization scheme has little to do with the simulation result. The results also show that there are only four classes of water substances, namely the cloud water, cloud ice, snow, and vapor, in the simulation of the moderate snowfall event. The analysis of the cloud microphysics budgets in the explicit experiment shows that the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow, and the Bergeron process of cloud ice are the dominant cloud microphysical processes in the simulation. The accretion of cloud water by snow and the deposition growth of the snow are equally important in the development of the snow.
基金This research was supported by the National Natural Science Foundation of China under Grant No.49794030.
文摘Numerical simulations of two heavy rainfall cases in the Changjiang-Huaihe River basin are performed with TRMM/PR (precipitation radar) data incorporated into the PSU/NCAR meso scale model MM5. The mixing ratio of rainwater q <SUB>r</SUB> is obtained from the R −q <SUB>r</SUB> relation (R is the rainfall rate), and the mixing ratio of water vapor q <SUB>v</SUB> in the model is replaced by q <SUP>1</SUP>′<SUB>v</SUB> = q <SUB>v</SUB>+q <SUB>r</SUB>. Then, TRMM/PR data are used to modify humidity analysis obtained from conventional radiosonde data, and sensitivity experiments (STE) are performed and compared to control experiments (CTL). Results show that both the heavy rainfall distribution and its maximum amounts from STE are improved compared with those from CTL.
基金supported by NASA Earth Science Program, NSF Climate Dynamics Programthe Japan Agency for Marine-Earth Science and Technology (JAMSTEC), NASA+1 种基金NOAA through their sponsorship of the IPRCsupported by APEC Climate Center (APCC) as a part of APCC international research project
文摘With a hybrid atmosphere-ocean coupled model we carried out an experimental forecast of a well documented Madden-Julian Oscillation (MJO) event that was observed during the period of Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE). The observed event, originated in the western Indian Ocean around 6 January 1993, moved eastward with a phase speed of about 6.2 m s 1 and reached the dateline around February 1. The hybrid coupled model reasonably forecasts the MJO initiation in the western Indian Ocean, but the predicted MJO event propagates too slow (~ 4.4 m s 1 ). Results from previous observational studies using unprecedented humidity profiles obtained by NASA Aqua/AIRS satellite suggested that two potential physical processes may be responsible for this model caveat. After improving the cumulus parameterization scheme based on the observations, the model is able to forecast the same event one month ahead. Further sensitivity experiment confirms that the speed-up of model MJO propagation is primarily due to the improved convective scheme. Further, air-sea coupling plays an important role in maintaining the intensity of the predicted MJO. The results here suggest that MJO prediction skill is sensitive to model cumulus parameterization and air-sea coupling.
基金Supported by the National Natural Science Foundation of China(41305090)National Science and Technology Support Program of China(2012BAC22B02)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406005)
文摘Cumulus convection is a key linkage between hydrological cycle and large-scale atmospheric circulation. Cumulus parameterization scheme is an important component in numerical weather and climate modeling studies. In the Global/Regional Assimilation and Prediction Enhanced System (GRAPES), turbulent mixing and diffusion approach is applied in its shallow convection scheme. This method overestimates the vertical transport of heat and moisture fluxes but underestimates cloud water mixing ratio over the region of stratocumulus clouds. As a result, the simulated low stratocumulus clouds are less than observations. To overcome this problem, a mass flux method is employed in the shallow convection scheme to replace the original one. Meanwhile, the deep convection scheme is adjusted correspondingly. This modification is similar to that in the US NCEP Global Forecast System (GFS), which uses the simplified Arakawa Schubert Scheme (SAS). The planetary boundary layer scheme (PBL) is also revised by considering the coupling between the PBL and stratocumulus clouds. With the modification of both the cumulus and PBL schemes, the GRAPES simulation of shallow convective heating rate becomes more reasonable; total amounts of stratocumulus clouds simulated over the eastern Pacific and their vertical structure are more consistent with observations; the underestimation of stratocumulus clouds simulated by original schemes is less severe with the revised schemes. Precipitation distribution in the tropics becomes more reasonable and spurious precipitation is effectively suppressed. The westward extension and northward movement of the western Pacific subtropical high simulated with the revised schemes are more consistent with Final Operational Global Analysis (FNL) than that simulated with the original schemes. The statistical scores for the global GRAPES forecast are generally improved with the revised schemes, especially for the simulation of geopotential height in the Northern Hemisphere and winds in the tropics. Root mean square errors (RMSEs) decrease in the lower and upper troposphere with the revised schemes. The above results indicate that with the revised cumulus and PBL schemes, model biases in the tropics decrease and the global GRAPES performance is greatly improved.
基金supported by National Natural Science Foundation of China(Grant No.40830955)National Science and Technology Supporting Program (Grant No.2012BAC22B03)
文摘Here discussed is the sensitivity of simulated typhoon track and intensity over the Northwest Pacific Ocean to different cumulus schemes.The results from the 20 typhoon cases during 2003-2008 show that the simulation of typhoon track and intensity are very sensitive to cumulus schemes.The relationship between simulations of typhoon track and cumulus schemes can be case dependent.Different best tracks obtained from different case studies depend on which cumulus scheme we chose.However,simulations of typhoon intensity exhibit different features.The Kain-Fritsch scheme simulation obtains the most intensive typhoon,whereas the Betts-Miller-Janjic scheme and the Grell-Devenyi scheme obtain weaker typhoons.The sensitivity of simulated typhoon track and intensity to different cumulus schemes is due mainly to different hypotheses and precipitation calculations.The difference of simulated large scale circulations using different cumulus schemes leads to the difference of typhoon tracks.The closer the simulations are compared to observations,the less the errors of simulated typhoon tracks.The difference of simulated typhoon intensity is due mainly to the difference of simulated vertical heating of the atmosphere.These lead to different strengths of convection which causes the difference of cumulus precipitation and latent heat.The KF scheme simulation obtains the strongest vertical convection,the obvious warm core structure,more cumulus precipitation,and stronger intensity.By contrast,the BMJ scheme and the GD scheme obtain weaker convection,less cumulus precipitation,and weaker intensity.
基金Supported by the "973" National Basic Research Program of China under Grant Nos. 2011CB952004 and 2006CB400500the National Natural Science Foundation of China under Grant Nos. 40705029 and 40830639
文摘The sensitivity of a regional climate model (RCM) to cumulus parameterization (CUPA) schemes in modeling summer precipitation over East Asia has been investigated by using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (PSU-NCAR MM5). The feasibility of physical ensemble and the effect of interior (spectral) nudging are also assessed. The RCM simulations are evaluated against the NCEP/NCAR reanalysis data and NCEP/CPC precipitation data for three summers (JJA) in 1991, 1998, and 2003. The results show that the RCM is highly sensitive to CUPA schemes. Different CUPA schemes cause distinctive characteristics in the modeling of JJA precipitation and the intraseasonal (daily) variability of regional precipitation. The sensitivity of the RCM simulations to the CUPA schemes is reduced by adopting the spectral nudging technique, which enables the RCM to reproduce more realistic large-scale circulations at the upper levels of the atmosphere as well as near the surface, and better precipitation simulation in the selected experiments. The ensemble simulations using different CUPA schemes show higher skills than individual members for both control runs and spectral nudging runs. The physical ensemble adopting the spectral nudging technique shows the highest downscaling skill in capturing the general circulation patterns for all experiments and improved temporal distributions of precipitation in some regions.
基金supported by National Basic Research Program of China (Grant Nos. 2010CB951703 and 2009CB421403)Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q11-01 and KZCX2-YW-BR-14) "Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issue" of the Chinese Academy of Sciences (Grant No. XDA05110303)
文摘The sensitivity of simulated tropical intraseasonal oscillations (ISO) to different cumulus parameterization schemes was analyzed using an atmospheric general circulation model (latest version-SAMIL2.2.3) developed at the Laboratory for Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) at the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences.Results show that the basic features of tropical climatological intraseasonal oscillations (CISO) can be captured using all three cumulus schemes.The CISO simulated by the Tiedtke scheme was found to be more realistic than that of the Manabe and Zhang-McFarlane schemes.The results of simulated transient intraseasonal oscillations (TISO) indicate that although the Tiedtke and the Zhang-McFarlane schemes in the new version SAMIL2.2.3 have been adjusted according to different problems,only the latter can simulate the eastward propagation of the 27-50-day TISO mode.It may be associated with the more realistic diabatic heating profile simulated by the Zhang-McFarlane scheme.In addition,the Manabe scheme in SAMIL2.2.3 is the same as that in the prior version SAMIL2.08.However,some aspects of the physical process,such as the radiation scheme and aerosol condition,have been changed.Conversely the eastward propagation from 100°E to the west of the tropical 27-50-day TISO mode only can be simulated using the Manabe scheme of SAMIL 2.08.Consequently,not all the improvements of physical parameterization schemes work well in every respect.The coordinated developments between dynamic frame and physical processes,and among different physical processes,are important methods that may be used to improve the model.