This paper presents experimental measurements of coolant flow field in the water jacket of a diesel engine cylinder head. The test was conducted at three different flow rates using a 2-D PIV system. Appropriate tracin...This paper presents experimental measurements of coolant flow field in the water jacket of a diesel engine cylinder head. The test was conducted at three different flow rates using a 2-D PIV system. Appropriate tracing particles were selected and delivery device was designed and manufactured before the test. The flow parameters, such as velocity, vorticity and turbulence, were used to analyze the flow field. The effects of vortex which was located between the intake valve and the exhaust valve were discussed. The experimental results showed an asymmetric distribution of velocity in the water jacket. This led to an asymmetric thermal distribution, which would shorten the service life of the cylinder head. The structure optimization to the water jacket of cylinder head was proposed in this paper. The experimental system, especially the 2-D PIV system, is a great help to study the coolant flow structure and analyze cooling mechanism in the diesel engine cylinder head.展开更多
Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance th...Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance the pressure difference between the inside and outside of FCI,are considered with a slot in Hartmann wall or a slot in side wall,respectively.The velocity and pressure distribution of FCI made of SiC/SiC_f are numerically studied to illustrate the 3-D MHD flow effects,which clearly show that the flows in fusion blanket with FCI are typical three-dimensional issues and the assumption of 2-D fully developed flows is not the real physical problem of the MHD flows in dual-coolant liquid metal fusion blanket.The optimum opening location of PES has been analyzed based on the 3-D pressure and velocity distributions.展开更多
Based on nuclear power plant(NPP) best-estimate transient analysis with RELAP5 / MOD3 code,the reactor point kinetics model in RELAP5 / MOD3 code is replaced by the two-group,3-D space and time dependent neutron kinet...Based on nuclear power plant(NPP) best-estimate transient analysis with RELAP5 / MOD3 code,the reactor point kinetics model in RELAP5 / MOD3 code is replaced by the two-group,3-D space and time dependent neutron kinetic model,and two-fluid model is replaced by drift flux model.A coupled three-dimensional physics and thermal-hydrodynamics model is used to develop its corresponding computing code,thus simulating natural circulation of single-phase flow for the PWR.In this paper,we report the forward and reverse flow distribution in the inverted U-tubes of the steam generator(SG) under some typical operating conditions in the natural circulation case, and analyze the influence of main coolant pump resistance on the forward and reverse flow distribution.The calculation results show that,the pressure drop between SG inlet and outlet plenum decreases,and the SG inlet and outlet mass flow decrease with an increased main coolant pump resistance,but net mass flux of reverse flow in inverted U-tubes,and the ratio of mass flow in all reverse flow tubes to that of main coolant pipeline increase, meanwhile,the secondary steam load is invariable in this process.展开更多
基金funded by the National Natural Science Foundation of China,Grant No.51161130525 and 51136003supported by the 111 Project,No.B07009
文摘This paper presents experimental measurements of coolant flow field in the water jacket of a diesel engine cylinder head. The test was conducted at three different flow rates using a 2-D PIV system. Appropriate tracing particles were selected and delivery device was designed and manufactured before the test. The flow parameters, such as velocity, vorticity and turbulence, were used to analyze the flow field. The effects of vortex which was located between the intake valve and the exhaust valve were discussed. The experimental results showed an asymmetric distribution of velocity in the water jacket. This led to an asymmetric thermal distribution, which would shorten the service life of the cylinder head. The structure optimization to the water jacket of cylinder head was proposed in this paper. The experimental system, especially the 2-D PIV system, is a great help to study the coolant flow structure and analyze cooling mechanism in the diesel engine cylinder head.
基金supported by National Natural Science Foundation of China with grant Nos.10872212,50936006National Magnetic Confinement Fusion Science Program in China with grant No.2009GB10401
文摘Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance the pressure difference between the inside and outside of FCI,are considered with a slot in Hartmann wall or a slot in side wall,respectively.The velocity and pressure distribution of FCI made of SiC/SiC_f are numerically studied to illustrate the 3-D MHD flow effects,which clearly show that the flows in fusion blanket with FCI are typical three-dimensional issues and the assumption of 2-D fully developed flows is not the real physical problem of the MHD flows in dual-coolant liquid metal fusion blanket.The optimum opening location of PES has been analyzed based on the 3-D pressure and velocity distributions.
文摘Based on nuclear power plant(NPP) best-estimate transient analysis with RELAP5 / MOD3 code,the reactor point kinetics model in RELAP5 / MOD3 code is replaced by the two-group,3-D space and time dependent neutron kinetic model,and two-fluid model is replaced by drift flux model.A coupled three-dimensional physics and thermal-hydrodynamics model is used to develop its corresponding computing code,thus simulating natural circulation of single-phase flow for the PWR.In this paper,we report the forward and reverse flow distribution in the inverted U-tubes of the steam generator(SG) under some typical operating conditions in the natural circulation case, and analyze the influence of main coolant pump resistance on the forward and reverse flow distribution.The calculation results show that,the pressure drop between SG inlet and outlet plenum decreases,and the SG inlet and outlet mass flow decrease with an increased main coolant pump resistance,but net mass flux of reverse flow in inverted U-tubes,and the ratio of mass flow in all reverse flow tubes to that of main coolant pipeline increase, meanwhile,the secondary steam load is invariable in this process.