Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system...Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.展开更多
Due to the gathering of sickrooms and consultation rooms in almost all hospitals, the performance of wireless devices system is deteriorated by the increase of collision probability and waiting time. In order to impro...Due to the gathering of sickrooms and consultation rooms in almost all hospitals, the performance of wireless devices system is deteriorated by the increase of collision probability and waiting time. In order to improve the performance of wireless devices system, relay is added to control the access point and then the access of devices is distributed. The concentration of access point is avoided and then the performance of system is expected to be improved. The discrete time Markov chain (DTMC) is proposed to calculate the access probability of devices in a duration time slot. The collision probability, throughput, delay, bandwidth and so on are theoretically calculated based on the standard IEEE802.15.6 and the performance of the system with and without relay is compared. The numerical result indicates that the performance of the system with control access point is higher than that of the system without control access point when the number of devices and/or packet arrive rate are high. However, the system with control access point is more complicated. It is the trade-off between the performance and the complication.展开更多
To solve the receding horizon control (RHC) problem in an online manner, a novel numerical method called the indirect Radau pseudospectral method (IRPM) is proposed in this paper. Based on calculus of variations a...To solve the receding horizon control (RHC) problem in an online manner, a novel numerical method called the indirect Radau pseudospectral method (IRPM) is proposed in this paper. Based on calculus of variations and the first-order necessary optimality condition, the RHC problem for linear time-varying (LTV) system is transformed into the two-point boundary value problem (TPBVP). The Radau pseudospectral approximation is employed to discretize the TPBVP into well-posed linear algebraic equations. The resulting linear algebraic equations are solved via a matrix partitioning approach afterwards to obtain the optimal feedback control law. For the nonlinear system, the linearization method or the quasi linearization method is employed to approximate the RHC problem with successive linear approximations. Subsequently, each linear problem is solved via the similar method which is used to solve the RHC problem for LTV system. Simulation results of three examples show that the IRPM is of high accuracy and of high compu- tation efficiency to solve the RHC problem and the stability of closed-loop systems is guaranteed.展开更多
基金supported by the National High Technology Research and Development Program of China (Grant No. 2007AA041401)Tianjin Natural Science Foundation,China (Grant Nos. 08JCZDJC18600 and 09JCZDJC23900)the University Science and Technology Development Foundation of Tianjin City,China (Grant No. 2006ZD32)
文摘Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.
文摘Due to the gathering of sickrooms and consultation rooms in almost all hospitals, the performance of wireless devices system is deteriorated by the increase of collision probability and waiting time. In order to improve the performance of wireless devices system, relay is added to control the access point and then the access of devices is distributed. The concentration of access point is avoided and then the performance of system is expected to be improved. The discrete time Markov chain (DTMC) is proposed to calculate the access probability of devices in a duration time slot. The collision probability, throughput, delay, bandwidth and so on are theoretically calculated based on the standard IEEE802.15.6 and the performance of the system with and without relay is compared. The numerical result indicates that the performance of the system with control access point is higher than that of the system without control access point when the number of devices and/or packet arrive rate are high. However, the system with control access point is more complicated. It is the trade-off between the performance and the complication.
基金supported by the National Natural Science Foundation of China(Nos.61174221 and 61402039)
文摘To solve the receding horizon control (RHC) problem in an online manner, a novel numerical method called the indirect Radau pseudospectral method (IRPM) is proposed in this paper. Based on calculus of variations and the first-order necessary optimality condition, the RHC problem for linear time-varying (LTV) system is transformed into the two-point boundary value problem (TPBVP). The Radau pseudospectral approximation is employed to discretize the TPBVP into well-posed linear algebraic equations. The resulting linear algebraic equations are solved via a matrix partitioning approach afterwards to obtain the optimal feedback control law. For the nonlinear system, the linearization method or the quasi linearization method is employed to approximate the RHC problem with successive linear approximations. Subsequently, each linear problem is solved via the similar method which is used to solve the RHC problem for LTV system. Simulation results of three examples show that the IRPM is of high accuracy and of high compu- tation efficiency to solve the RHC problem and the stability of closed-loop systems is guaranteed.