Lithium-ion batteries(LIBs)and lithium-sulfur(Li–S)batteries are two types of energy storage systems with significance in both scientific research and commercialization.Nevertheless,the rational design of electrode m...Lithium-ion batteries(LIBs)and lithium-sulfur(Li–S)batteries are two types of energy storage systems with significance in both scientific research and commercialization.Nevertheless,the rational design of electrode materials for overcoming the bottlenecks of LIBs and Li–S batteries(such as low diffusion rates in LIBs and low sulfur utilization in Li–S batteries)remain the greatest challenge,while two-dimensional(2D)electrodes materials provide a solution because of their unique structural and electrochemical properties.In this article,from the perspective of ab-initio simulations,we review the design of 2D electrode materials for LIBs and Li–S batteries.We first propose the theoretical design principles for 2D electrodes,including stability,electronic properties,capacity,and ion diffusion descriptors.Next,classified examples of promising 2D electrodes designed by theoretical simulations are given,covering graphene,phosphorene,MXene,transition metal sulfides,and so on.Finally,common challenges and a future perspective are provided.This review paves the way for rational design of 2D electrode materials for LIBs and Li–S battery applications and may provide a guide for future experiments.展开更多
Computational design of proteins is a relatively new field, where scientists search the enormous sequence space for sequences that can fold into desired structure and perform desired functions. With the computational ...Computational design of proteins is a relatively new field, where scientists search the enormous sequence space for sequences that can fold into desired structure and perform desired functions. With the computational approach, proteins can be designed, for example, as regulators of biological processes, novel enzymes, or as biotherapeutics. These approaches not only provide valuable information for understanding of sequence-structure-function relations in proteins, but also hold promise for applications to protein engineering and biomedical research. In this review, we briefly introduce the rationale for computational protein design, then summarize the recent progress in this field, including de novo protein design, enzyme design, and design of protein-protein interactions. Challenges and future prospects of this field are also discussed.展开更多
Cyclic peptides,with their unique structures and versatile biological activities,hold great potential for combating skin aging issues such as wrinkles,laxity,and pigmentation.However,traditional discovery methods rely...Cyclic peptides,with their unique structures and versatile biological activities,hold great potential for combating skin aging issues such as wrinkles,laxity,and pigmentation.However,traditional discovery methods relying on iterative synthesis and screening are labor-intensive and resource-intensive.Here,we present an integrated platform combining automated rapid cyclopeptide synthesis,virtual screening,and biological activity assessment,enabling the transformation of designed cyclic peptide sequences into chemical entities within minutes with high crude purity.Using ADCP docking with the ADFR suite,we identified a series of novel cyclic peptides targeting JAK1,Keap1,and TGF-βproteins.Among these,MKC1 demonstrated optimal anti-aging efficacy,as evidenced by its reactive oxygen species(ROS)scavenging activity(20%)and significant upregulation of type I collagen genes(Col1a1a:156%,Col1a1b:87%,Col1a2:103%)and elastin(Elna:132%)at a concentration of 0.001%.This study establishes a robust foundation for the discovery and development of cyclic peptides as anti-aging active compounds.展开更多
In the past decade,there has been an increasing recognition of the role of computational design optimization in early-stage performance-based architectural design exploration.However,it remains challenging for designe...In the past decade,there has been an increasing recognition of the role of computational design optimization in early-stage performance-based architectural design exploration.However,it remains challenging for designers to apply such optimization-based design explorations in practice.To address this issue,this paper introduces a design tool,called EvoMass,and an associated design method that facilitates design exploration for building massing typologies in performance-based design tasks.EvoMass is capable of offering architects design options reflecting performance-related building massing typologies for the design task,without necessitating advanced computational design skills.More importantly,it can provide architects with insights into the underlying performance implications,thereby enhancing early-stage performance-based design exploration.EvoMass and its associated design method overcome the limitation in the conventional typology-first-optimization-second design procedure adopted by most existing tools,and it promotes a typology-oriented design exploration method of using computational optimization in performance-based architectural design.To demonstrate the efficacy of EvoMass,case studies derived from architectural design studio tasks,incorporating daylighting,solar exposure,and subjective design intents,and the result of a user survey are presented,which highlights how EvoMass and the performance-based design optimization and exploration can enable architects to achieve a more performance-aware design.展开更多
Chinese ice-ray (IR) lattices, known for their intricate and visually fascinating random patterns as decorative elements in traditional 18th-century Chinese window design, exhibit underlying stiffness as latticed wind...Chinese ice-ray (IR) lattices, known for their intricate and visually fascinating random patterns as decorative elements in traditional 18th-century Chinese window design, exhibit underlying stiffness as latticed window fences. Such unique patterns represent a new morphology within the family of stochastic lattices. However, the latent structural potential within the random patterns of ice-ray lattices remains largely unexplored, particularly in the context of lattice shell design. This study systematically studies the geometric qualities of ice-ray lattice patterns and develops an algorithm to model these patterns for ice-ray lattice shell design. Subsequently, it assesses the structural feasibility and effectiveness of these lattice shells in comparison to conventional gridshells. The practicality of constructing random lattice shells using digital fabrication tools is also explored. Employing fractal geometry as a foundational framework, this research not only offers insights into the potential of ice-ray lattices for innovative lattice shell design but also introduces a new structural morphology to the field, expanding the possibilities of incorporating stochastic patterns in lattice shell design. Ultimately, it opens up new opportunities for innovative lattice shell designs, emphasizing the potential of stochastic patterns in structural applications.展开更多
Various parameters can be integrated in material-based computational design in architecture.Materials are the main driver of these processes and evaluated with the constraints related to the form,performance,and fabri...Various parameters can be integrated in material-based computational design in architecture.Materials are the main driver of these processes and evaluated with the constraints related to the form,performance,and fabrication techniques.However,current methodologies mostly involve investigating already existing materials.Studies on computational material design,in which new materials are developed by designing their microstructures in response to the performative issues,are generally undertaken at the material scale,and not adopted to the architectural design process yet.To resolve this issue,the methodology titled Interscalable Material Microstructure Organization in Performance-based Computational Design(I2MO_PCD)is developed and presented in three stages,including(1)identification of different types of material microstructures,(2)computational material design,and(3)prototyping.Data-based material modelling and visualization,and algorithmic modelling techniques are utilized,followed by various performance simulations as a part of an iterative process.New microstructure organizations are designed computationally,organized under three main groups as linear-curvilinear,crystal and metaball-voronoi.The outcomes of different performance analyses,including structure,radiation,direct sun hours,acoustics and thermal bridge were compared.Thus,the role of geometrical organization of microstructures,scales and material types in different performance computations were identified,by designing and fabricating synthetic materials.展开更多
Computation-based approaches in design have emerged in the last decades and rapidly became popular among architects and other designers.Design professionals and researchers adopted different terminologies to address t...Computation-based approaches in design have emerged in the last decades and rapidly became popular among architects and other designers.Design professionals and researchers adopted different terminologies to address these approaches.However,some terms are used ambiguously and inconsistently,and different terms are commonly used to express the same concept.This paper discusses computational design(CD)and proposes an improved and sound taxonomy for a set of key CD terms,namely,parametric,generative,and algorithmic design,based on an extensive literature review from which different definitions by various authors were collected,analyzed,and compared.展开更多
Construction material offcuts is a data problem that can largely be avoided by dimensional coordination during concept design.Besides the environmental benefits,early phase coordination is beneficial to the overall de...Construction material offcuts is a data problem that can largely be avoided by dimensional coordination during concept design.Besides the environmental benefits,early phase coordination is beneficial to the overall design process as it integrates information not typically considered until later in the design process.However,taking reality-changing actions is often challenged by uncertainty,time constraints,and lack of integration of available tools.Acknowledging the potential of computational design in enabling architects to manage design and coordination complexities and taking plasterboard opportunities for dimensional coordination,the paper presents a review and assessment of the existing methods to interrogate what,when,and how are these adaptable to the task.The study shows that ML-based methods outperform other methods and concludes that leveraging computational design powers to reduce offcuts is not a question of a tool,but one of a strategy.Eventually,the future steps to achieving such a strategy are discussed.展开更多
Stable isotopes have been routinely used in chemical sciences,medical treatment and agricultural research.Conventional technologies to produce high-purity isotopes entail lengthy separation processes that often suffer...Stable isotopes have been routinely used in chemical sciences,medical treatment and agricultural research.Conventional technologies to produce high-purity isotopes entail lengthy separation processes that often suffer from low selectivity and poor energy efficiency.Recent advances in nanoporous materials open up new opportunities for more efficient isotope enrichment and separation as the pore size and local chemical environment of such materials can be engineered with atomic precision.In this work,we demonstrate the unique capability of nanoporous membranes for the separation of stable carbon isotopes by computational screening a materials database consisting of 12,478 computation-ready,experimental metal-organic frameworks(MOFs).Nanoporous materials with the highest selectivity and membrane performance scores have been identified for separation of^(12)CH_4/^(13)CH_4 at the ambient condition(300 K).Analyzing the structural features and metal sites of the promising MOF candidates offers useful insights into membrane design to further improve the performance.An upper limit of the efficiency has been identified for the separation of^(12)CH_4/^(13)CH_4 with the existing MOFs and those variations by replacement of the metal sites.展开更多
Biomanufacturing,which uses renewable resources as raw materials and uses biological processes to produce energy and chemicals,has long been regarded as a production model that replaces the unsustainable fossil econom...Biomanufacturing,which uses renewable resources as raw materials and uses biological processes to produce energy and chemicals,has long been regarded as a production model that replaces the unsustainable fossil economy.The construction of non-natural and efficient biosynthesis routes of chemicals is an important goal of green biomanufacturing.Traditional methods that rely on experience are difficult to support the realization of this goal.However,with the rapid development of information technology,the intelligence of biomanufacturing has brought hope to achieve this goal.Retrobiosynthesis and computational enzyme design,as two of the main technologies in intelligent biomanufacturing,have developed rapidly in recent years and have made great achievements and some representative works have demonstrated the great value that the integration of the two fields may bring.To achieve the final integration of the two fields,it is necessary to examine the information,methods and tools from a bird’s-eye view,and to find a feasible idea and solution for establishing a connection point.For this purpose,this article briefly reviewed the main ideas,methods and tools of the two fields,and put forward views on how to achieve the integration of the two fields.展开更多
In the realm of drug discovery,recent advancements have paved the way for innovative approaches and methodologies.This comprehensive review encapsulates six distinct yet interrelated mini-reviews,each shedding light o...In the realm of drug discovery,recent advancements have paved the way for innovative approaches and methodologies.This comprehensive review encapsulates six distinct yet interrelated mini-reviews,each shedding light on novel strategies in drug development.(a)The resurgence of covalent drugs is highlighted,focusing on the targeted covalent inhibitors(TCIs)and their role in enhancing selectivity and affinity.(b)The potential of the quantum mechanics-based computational aid drug design(CADD)tool,Cov_DOX,is introduced for predicting protein-covalent ligand binding structures and affinities.(c)The scaffolding function of proteins is proposed as a new avenue for drug design,with a focus on modulating protein-protein interactions through small molecules and proteolysis targeting chimeras(PROTACs).(d)The concept of pro-PROTACs is explored as a promising strategy for cancer therapy,combining the principles of prodrugs and PROTACs to enhance specificity and reduce toxicity.(e)The design of prodrugs through carbon-carbon bond cleavage is discussed,offering a new perspective for the activation of drugs with limited modifiable functional groups.(f)The targeting of programmed cell death pathways in cancer therapies with small molecules is reviewed,emphasizing the induction of autophagy-dependent cell death,ferroptosis,and cuproptosis.These insights collectively contribute to a deeper understanding of the dynamic landscape of drug discovery.展开更多
On 9 October 2024,in a high-profile vote of confidence for the promise of using artificial intelligence(AI)in scientific discovery,the Royal Swedish Academy of Sciences awarded Demis Hassabis(co-founder and chief exec...On 9 October 2024,in a high-profile vote of confidence for the promise of using artificial intelligence(AI)in scientific discovery,the Royal Swedish Academy of Sciences awarded Demis Hassabis(co-founder and chief executive officer)and John M.Jumper(direc-tor)of Google DeepMind(London,UK)the 2024 Nobel Prize in Chemistry for their pioneering work in developing the AI-powered protein structure prediction model AlphaFold2(AF2)[1].Also shar-ing the prize was David Baker(half to Hassabis and Jumper;half to Baker),professor of biochemistry at the University of Washington(Seattle,WA,USA),for his work on computational protein design that started with the mid-1990s development of Rosetta,a since-evolving suite of software tools that model protein structures using physical principles[2]-and now also AI[3].展开更多
The use of computer in architectural design shouldn’t sacrifice the pursuit of a human-oriented built environment.The technological applications should be legitimated by the objectives and motivations in multiple dim...The use of computer in architectural design shouldn’t sacrifice the pursuit of a human-oriented built environment.The technological applications should be legitimated by the objectives and motivations in multiple dimensions,but not abuse its generative power against the social and cultural interests.This article is based upon our synthetic computational design research for high density indemnificatory housing in China(Fig.1),which challenges the conventional standard design for large scale social housing in the Industrial Era,and reflects our exploration for innovative,multi-disciplinary,systematic and synthetic design in the new design paradigm of computation.It also promotes to shift the privilege of cutting-edge design techniques and avant-garde concepts from the“High(end)Architecture”to the ordinary architecture during the unprecedented built-environment development in China.Architectural design should have no discrimination between the Olympic stadiums in the capital and the social housing in the subordinate developed cities,as they both need to be innovative and meaningful.The final design research outputs address sustainable transformation initiated by the residents during the whole life span of the housing.We believe that the human factor(including stakeholders,users,designers and builders)is even more important in architectural design,city planning,urban design,landscape and interior design while technology development is accelerating.Conceptualization,imagination and systemization would become significant pacemakers which perpetuate design innovation.展开更多
This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design id...This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.展开更多
In the last years, architectural practice has been confronted with a paradigm shift towards the application of digital methods in design activities. In this regard, it is a pedagogic challenge to provide a suitable co...In the last years, architectural practice has been confronted with a paradigm shift towards the application of digital methods in design activities. In this regard, it is a pedagogic challenge to provide a suitable computational background for architectural students, to improve their ability to apply algorithmic-parametric logic, as well as fabrication and prototyping resources to design problem solving. This challenge is even stronger when considering less favored social and technological contexts, such as in Brazil, for example. In this scenario, this article presents and discusses the procedures and the results from a didactic experience carried out in a design computing-oriented discipline, inserted in the curriculum of a Brazilian architecture course. Hence, this paper shares some design computing teaching experiences and presents some results on computational methods and creative approaches, with a view to contribute to a better understanding about the relations between logical thinking, mathematics and architectural design processes.展开更多
In the past two decades,highly pathogenic coronaviruses(CoVs),such as severe acute respiratory syndrome coronavirus(SARS-CoV),Middle East respiratory syndrome coronavirus(MERS-CoV),and severe acute respiratory syndrom...In the past two decades,highly pathogenic coronaviruses(CoVs),such as severe acute respiratory syndrome coronavirus(SARS-CoV),Middle East respiratory syndrome coronavirus(MERS-CoV),and severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),have constituted a grave threat to human health.Broadspectrum anti-CoV fusion inhibitors that target the heptapeptide repeat(HR)region within the S2 subunit of SARS-CoV-2 spike(S)protein exhibit inhibitory activity against various CoVs.In this study,we employed EK1,a fusion inhibitor previously characterized for its broad spectrum and potent antiviral activity,as a scaffold for computational design to enhance its inhibitory potential using the Rosetta software suite.We designed EK1 variants and synthesized two N-terminally extended EK1 elongation peptides,and evaluated their inhibitory activity.The results revealed that the designed peptides enhanced inhibitory activity against diverse CoVs.Structural analysis and molecular dynamics simulations demonstrated that EK1 variants formed more robust interactions with HR1 of SARS-CoV-2,and these interactions were conserved across different CoVs.These findings underscore the utility of computational approaches in optimizing therapeutic peptides.展开更多
Burgeoning growth of tall buildings in urban areas around the world is placing new demands on their performance under winds.This involves selection of the building form that minimizes wind loads and structural topolog...Burgeoning growth of tall buildings in urban areas around the world is placing new demands on their performance under winds.This involves selection of the building form that minimizes wind loads and structural topologies that efficiently transfer loads.Current practice is to search for optimal shapes,but this limits buildings with static or fixed form.Aerodynamic shape tailoring that consists of modifying the external form of the building has shown great promise in reducing wind loads and associated structural motions as reflected in the design of Taipei 101 and Burj Khalifa.In these buildings,corner modifications of the cross-section and tapering along the height are introduced.An appealing alternative is to design a building that can adapt its form to the changing complex wind environment in urban areas with clusters of tall buildings,i.e.,by implementing a dynamic facade.To leap beyond the static shape optimization,autonomous dynamic morphing of the building shape is advanced in this study,which is implemented through a cyber–physical system that fuses together sensing,computing,actuating,and engineering informatics.This approach will permit a building to intelligently morph its profile to minimize the source of dynamic wind load excitation,and holds the promise of revolutionizing tall buildings from conventional static to dynamic facades by taking advantage of the burgeoning advances in computational design.展开更多
This study is a digital form-finding and manual fabrication experiment in woven architectural design,with one traditional weaving style,Kagome,used to scale the craft up into an architectural-scale bamboo woven artifa...This study is a digital form-finding and manual fabrication experiment in woven architectural design,with one traditional weaving style,Kagome,used to scale the craft up into an architectural-scale bamboo woven artifact.Kagome is a trihexagonal pattern employed in traditional bamboo basketry as a triaxial weaving system,resulting in an object with a self-bracing capacity without the use of fasteners owing to its interlacing lattices.Although existing studies and tools have addressed triaxial weaving design and representation,the current consideration of the advantages of weaving with bamboo is insufficient.To address this research gap,this study develops a computational design method based on studies on bamboo basketry.This allows for the representation and exploration of design geometries using combinations of regular triangular meshes for the fabrication of Kagome woven bamboo artifacts.A full-scale mock-up was fabricated to evaluate the effectiveness of the method.The mock-up demonstrated the self-bracing properties of Kagome,but there were discrepancies between the mock-up and the design.Factors affecting bamboo weaving on an architectural scale have been identified within this study to inform future research on woven bamboo structures.展开更多
Flexible housing resolves the fundamental conflicts between the long-standing structure and the evolving demands.We propose a computational method of optimizing the structural layout of high-rise residential buildings...Flexible housing resolves the fundamental conflicts between the long-standing structure and the evolving demands.We propose a computational method of optimizing the structural layout of high-rise residential buildings.Chinese high-rise apartment buildings have widely employed shear wall-frame structure in which one big room or multiple small rooms could occupy the same span.Fitting multiple floor plans into a fixed sparse scheme of shear walls and columns is feasible.We developed a computational framework to seek flexible structural schemes.A building scheme consists of a circulation core,shear walls,columns,and boundaries.The computer program automatically adapts floor plans to any drawn or generated scheme.Based on a large dataset of apartment layouts,the number of apartments that fit into a building scheme statistically reflects the flexibility of the scheme.If many hypothetical plans can fit into a wallframe structure in computer simulation,this structure could probably support several generations of unknown plans.Such a data-driven computational method provides the possibility of creating a one-to-many mapping between permanent structure and evolving apartment plans.展开更多
Identifying thermal bridges on building façades has been a great challenge for architects,especially during the conceptual design stage.This is not only due to the complexity of parameters when calculating therma...Identifying thermal bridges on building façades has been a great challenge for architects,especially during the conceptual design stage.This is not only due to the complexity of parameters when calculating thermal bridges,but also lack of feature integration between building energy simulation(BES)tools and the actual building conditions.For example,existing BES tools predominantly calculate thermal bridges only in steady state without considering the temperature dynamic behaviour of building outdoors.Consequently,relevant features such as thermal delay,decrement factor,and operative temperature are often neglected,and this can lead to miscalculation of energy consumption.This study then proposes an integrated method to calculate dynamic thermal bridges under transient conditions by incorporating field observations and computational simulations of thermal bridges.More specifically,the proposed method employs several measurement tools such as HOBO data logger to record the actual conditions of indoor and outdoor room temperature and thermal cameras to identify the surface temperature of selected building junctions.The actual datasets are then integrated with the simulation workflow developed in BES tools.This study ultimately enables architects not only to identify potential thermal bridges on existing building façades but also to support material and geometric exploration in early design phase.展开更多
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(PolyU152178/20 E)the Hong Kong Polytechnic University(1-W19S)Science and Technology Program of Guangdong Province of China(2020A0505090001).
文摘Lithium-ion batteries(LIBs)and lithium-sulfur(Li–S)batteries are two types of energy storage systems with significance in both scientific research and commercialization.Nevertheless,the rational design of electrode materials for overcoming the bottlenecks of LIBs and Li–S batteries(such as low diffusion rates in LIBs and low sulfur utilization in Li–S batteries)remain the greatest challenge,while two-dimensional(2D)electrodes materials provide a solution because of their unique structural and electrochemical properties.In this article,from the perspective of ab-initio simulations,we review the design of 2D electrode materials for LIBs and Li–S batteries.We first propose the theoretical design principles for 2D electrodes,including stability,electronic properties,capacity,and ion diffusion descriptors.Next,classified examples of promising 2D electrodes designed by theoretical simulations are given,covering graphene,phosphorene,MXene,transition metal sulfides,and so on.Finally,common challenges and a future perspective are provided.This review paves the way for rational design of 2D electrode materials for LIBs and Li–S battery applications and may provide a guide for future experiments.
基金supported by the National Basic Research Program of China(Grant No.2015CB910300)the National High Technology Research and Development Program of China(Grant No.2012AA020308)the National Natural Science Foundation of China(Grant No.11021463)
文摘Computational design of proteins is a relatively new field, where scientists search the enormous sequence space for sequences that can fold into desired structure and perform desired functions. With the computational approach, proteins can be designed, for example, as regulators of biological processes, novel enzymes, or as biotherapeutics. These approaches not only provide valuable information for understanding of sequence-structure-function relations in proteins, but also hold promise for applications to protein engineering and biomedical research. In this review, we briefly introduce the rationale for computational protein design, then summarize the recent progress in this field, including de novo protein design, enzyme design, and design of protein-protein interactions. Challenges and future prospects of this field are also discussed.
基金supported by the National Natural Science Foundation of China(22208290)the Guangzhou Muke Biotechnology Co.,Ltd.
文摘Cyclic peptides,with their unique structures and versatile biological activities,hold great potential for combating skin aging issues such as wrinkles,laxity,and pigmentation.However,traditional discovery methods relying on iterative synthesis and screening are labor-intensive and resource-intensive.Here,we present an integrated platform combining automated rapid cyclopeptide synthesis,virtual screening,and biological activity assessment,enabling the transformation of designed cyclic peptide sequences into chemical entities within minutes with high crude purity.Using ADCP docking with the ADFR suite,we identified a series of novel cyclic peptides targeting JAK1,Keap1,and TGF-βproteins.Among these,MKC1 demonstrated optimal anti-aging efficacy,as evidenced by its reactive oxygen species(ROS)scavenging activity(20%)and significant upregulation of type I collagen genes(Col1a1a:156%,Col1a1b:87%,Col1a2:103%)and elastin(Elna:132%)at a concentration of 0.001%.This study establishes a robust foundation for the discovery and development of cyclic peptides as anti-aging active compounds.
基金supported by the Xi’an Jiaotong-Liverpool University Research Development Fund(RDF-23-01-107)the National Natural Science Foundation of China(52178017)。
文摘In the past decade,there has been an increasing recognition of the role of computational design optimization in early-stage performance-based architectural design exploration.However,it remains challenging for designers to apply such optimization-based design explorations in practice.To address this issue,this paper introduces a design tool,called EvoMass,and an associated design method that facilitates design exploration for building massing typologies in performance-based design tasks.EvoMass is capable of offering architects design options reflecting performance-related building massing typologies for the design task,without necessitating advanced computational design skills.More importantly,it can provide architects with insights into the underlying performance implications,thereby enhancing early-stage performance-based design exploration.EvoMass and its associated design method overcome the limitation in the conventional typology-first-optimization-second design procedure adopted by most existing tools,and it promotes a typology-oriented design exploration method of using computational optimization in performance-based architectural design.To demonstrate the efficacy of EvoMass,case studies derived from architectural design studio tasks,incorporating daylighting,solar exposure,and subjective design intents,and the result of a user survey are presented,which highlights how EvoMass and the performance-based design optimization and exploration can enable architects to achieve a more performance-aware design.
基金This research was conducted as part of the RDF(Research Development Fund)project(RDF-19-01-28)supported by Xi'an Jiaotong-Liverpool University,China.
文摘Chinese ice-ray (IR) lattices, known for their intricate and visually fascinating random patterns as decorative elements in traditional 18th-century Chinese window design, exhibit underlying stiffness as latticed window fences. Such unique patterns represent a new morphology within the family of stochastic lattices. However, the latent structural potential within the random patterns of ice-ray lattices remains largely unexplored, particularly in the context of lattice shell design. This study systematically studies the geometric qualities of ice-ray lattice patterns and develops an algorithm to model these patterns for ice-ray lattice shell design. Subsequently, it assesses the structural feasibility and effectiveness of these lattice shells in comparison to conventional gridshells. The practicality of constructing random lattice shells using digital fabrication tools is also explored. Employing fractal geometry as a foundational framework, this research not only offers insights into the potential of ice-ray lattices for innovative lattice shell design but also introduces a new structural morphology to the field, expanding the possibilities of incorporating stochastic patterns in lattice shell design. Ultimately, it opens up new opportunities for innovative lattice shell designs, emphasizing the potential of stochastic patterns in structural applications.
基金Scientific Research Projects at Istanbul Technical University from the year 2021 to 2023(ITÜ BAP Project No.MAB-2021-42813).
文摘Various parameters can be integrated in material-based computational design in architecture.Materials are the main driver of these processes and evaluated with the constraints related to the form,performance,and fabrication techniques.However,current methodologies mostly involve investigating already existing materials.Studies on computational material design,in which new materials are developed by designing their microstructures in response to the performative issues,are generally undertaken at the material scale,and not adopted to the architectural design process yet.To resolve this issue,the methodology titled Interscalable Material Microstructure Organization in Performance-based Computational Design(I2MO_PCD)is developed and presented in three stages,including(1)identification of different types of material microstructures,(2)computational material design,and(3)prototyping.Data-based material modelling and visualization,and algorithmic modelling techniques are utilized,followed by various performance simulations as a part of an iterative process.New microstructure organizations are designed computationally,organized under three main groups as linear-curvilinear,crystal and metaball-voronoi.The outcomes of different performance analyses,including structure,radiation,direct sun hours,acoustics and thermal bridge were compared.Thus,the role of geometrical organization of microstructures,scales and material types in different performance computations were identified,by designing and fabricating synthetic materials.
基金This work was supported by national funds through Fundacao para a Ciencia-a Tecnologia(FCT)with references UID/CEC/50021/2019 and PTDC/ART-DAQ/31061/2017by the PhD grants under contract of FCT with references SFRH/BD/128628/2017 and SFRH/BD/98658/2013,and by the PhD grant under contract of University of Lisbon(UL),Instituto Superior Tecnico(IST)and the research unit Investigacao-Inovacao em Engenharia Civil para a Sustentabilidade(CERIS).
文摘Computation-based approaches in design have emerged in the last decades and rapidly became popular among architects and other designers.Design professionals and researchers adopted different terminologies to address these approaches.However,some terms are used ambiguously and inconsistently,and different terms are commonly used to express the same concept.This paper discusses computational design(CD)and proposes an improved and sound taxonomy for a set of key CD terms,namely,parametric,generative,and algorithmic design,based on an extensive literature review from which different definitions by various authors were collected,analyzed,and compared.
文摘Construction material offcuts is a data problem that can largely be avoided by dimensional coordination during concept design.Besides the environmental benefits,early phase coordination is beneficial to the overall design process as it integrates information not typically considered until later in the design process.However,taking reality-changing actions is often challenged by uncertainty,time constraints,and lack of integration of available tools.Acknowledging the potential of computational design in enabling architects to manage design and coordination complexities and taking plasterboard opportunities for dimensional coordination,the paper presents a review and assessment of the existing methods to interrogate what,when,and how are these adaptable to the task.The study shows that ML-based methods outperform other methods and concludes that leveraging computational design powers to reduce offcuts is not a question of a tool,but one of a strategy.Eventually,the future steps to achieving such a strategy are discussed.
基金financially supported by the National Science Foundation Harnessing the Data Revolution Big Idea under Grant No.NSF 1940118supported by the State Key Laboratory of Chemical Engineering(SKL-CHE20)。
文摘Stable isotopes have been routinely used in chemical sciences,medical treatment and agricultural research.Conventional technologies to produce high-purity isotopes entail lengthy separation processes that often suffer from low selectivity and poor energy efficiency.Recent advances in nanoporous materials open up new opportunities for more efficient isotope enrichment and separation as the pore size and local chemical environment of such materials can be engineered with atomic precision.In this work,we demonstrate the unique capability of nanoporous membranes for the separation of stable carbon isotopes by computational screening a materials database consisting of 12,478 computation-ready,experimental metal-organic frameworks(MOFs).Nanoporous materials with the highest selectivity and membrane performance scores have been identified for separation of^(12)CH_4/^(13)CH_4 at the ambient condition(300 K).Analyzing the structural features and metal sites of the promising MOF candidates offers useful insights into membrane design to further improve the performance.An upper limit of the efficiency has been identified for the separation of^(12)CH_4/^(13)CH_4 with the existing MOFs and those variations by replacement of the metal sites.
基金support from the National Nat-ural Science Foundation of China(U1663227,21861132017,21811530003,21878170).
文摘Biomanufacturing,which uses renewable resources as raw materials and uses biological processes to produce energy and chemicals,has long been regarded as a production model that replaces the unsustainable fossil economy.The construction of non-natural and efficient biosynthesis routes of chemicals is an important goal of green biomanufacturing.Traditional methods that rely on experience are difficult to support the realization of this goal.However,with the rapid development of information technology,the intelligence of biomanufacturing has brought hope to achieve this goal.Retrobiosynthesis and computational enzyme design,as two of the main technologies in intelligent biomanufacturing,have developed rapidly in recent years and have made great achievements and some representative works have demonstrated the great value that the integration of the two fields may bring.To achieve the final integration of the two fields,it is necessary to examine the information,methods and tools from a bird’s-eye view,and to find a feasible idea and solution for establishing a connection point.For this purpose,this article briefly reviewed the main ideas,methods and tools of the two fields,and put forward views on how to achieve the integration of the two fields.
基金supported by grants from the National Natural Science Foundation of China(No.82273770)the Foundation for Innovative Research Groups of the National Natural Science Foundation of Sichuan Province(No.24NSFTD0051).
文摘In the realm of drug discovery,recent advancements have paved the way for innovative approaches and methodologies.This comprehensive review encapsulates six distinct yet interrelated mini-reviews,each shedding light on novel strategies in drug development.(a)The resurgence of covalent drugs is highlighted,focusing on the targeted covalent inhibitors(TCIs)and their role in enhancing selectivity and affinity.(b)The potential of the quantum mechanics-based computational aid drug design(CADD)tool,Cov_DOX,is introduced for predicting protein-covalent ligand binding structures and affinities.(c)The scaffolding function of proteins is proposed as a new avenue for drug design,with a focus on modulating protein-protein interactions through small molecules and proteolysis targeting chimeras(PROTACs).(d)The concept of pro-PROTACs is explored as a promising strategy for cancer therapy,combining the principles of prodrugs and PROTACs to enhance specificity and reduce toxicity.(e)The design of prodrugs through carbon-carbon bond cleavage is discussed,offering a new perspective for the activation of drugs with limited modifiable functional groups.(f)The targeting of programmed cell death pathways in cancer therapies with small molecules is reviewed,emphasizing the induction of autophagy-dependent cell death,ferroptosis,and cuproptosis.These insights collectively contribute to a deeper understanding of the dynamic landscape of drug discovery.
文摘On 9 October 2024,in a high-profile vote of confidence for the promise of using artificial intelligence(AI)in scientific discovery,the Royal Swedish Academy of Sciences awarded Demis Hassabis(co-founder and chief executive officer)and John M.Jumper(direc-tor)of Google DeepMind(London,UK)the 2024 Nobel Prize in Chemistry for their pioneering work in developing the AI-powered protein structure prediction model AlphaFold2(AF2)[1].Also shar-ing the prize was David Baker(half to Hassabis and Jumper;half to Baker),professor of biochemistry at the University of Washington(Seattle,WA,USA),for his work on computational protein design that started with the mid-1990s development of Rosetta,a since-evolving suite of software tools that model protein structures using physical principles[2]-and now also AI[3].
文摘The use of computer in architectural design shouldn’t sacrifice the pursuit of a human-oriented built environment.The technological applications should be legitimated by the objectives and motivations in multiple dimensions,but not abuse its generative power against the social and cultural interests.This article is based upon our synthetic computational design research for high density indemnificatory housing in China(Fig.1),which challenges the conventional standard design for large scale social housing in the Industrial Era,and reflects our exploration for innovative,multi-disciplinary,systematic and synthetic design in the new design paradigm of computation.It also promotes to shift the privilege of cutting-edge design techniques and avant-garde concepts from the“High(end)Architecture”to the ordinary architecture during the unprecedented built-environment development in China.Architectural design should have no discrimination between the Olympic stadiums in the capital and the social housing in the subordinate developed cities,as they both need to be innovative and meaningful.The final design research outputs address sustainable transformation initiated by the residents during the whole life span of the housing.We believe that the human factor(including stakeholders,users,designers and builders)is even more important in architectural design,city planning,urban design,landscape and interior design while technology development is accelerating.Conceptualization,imagination and systemization would become significant pacemakers which perpetuate design innovation.
文摘This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.
文摘In the last years, architectural practice has been confronted with a paradigm shift towards the application of digital methods in design activities. In this regard, it is a pedagogic challenge to provide a suitable computational background for architectural students, to improve their ability to apply algorithmic-parametric logic, as well as fabrication and prototyping resources to design problem solving. This challenge is even stronger when considering less favored social and technological contexts, such as in Brazil, for example. In this scenario, this article presents and discusses the procedures and the results from a didactic experience carried out in a design computing-oriented discipline, inserted in the curriculum of a Brazilian architecture course. Hence, this paper shares some design computing teaching experiences and presents some results on computational methods and creative approaches, with a view to contribute to a better understanding about the relations between logical thinking, mathematics and architectural design processes.
基金supported by the National Natural Science Foundation of China(U22A20553 and 82241064)the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2021-I2M-1-038, 2022-I2M-1-021).
文摘In the past two decades,highly pathogenic coronaviruses(CoVs),such as severe acute respiratory syndrome coronavirus(SARS-CoV),Middle East respiratory syndrome coronavirus(MERS-CoV),and severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),have constituted a grave threat to human health.Broadspectrum anti-CoV fusion inhibitors that target the heptapeptide repeat(HR)region within the S2 subunit of SARS-CoV-2 spike(S)protein exhibit inhibitory activity against various CoVs.In this study,we employed EK1,a fusion inhibitor previously characterized for its broad spectrum and potent antiviral activity,as a scaffold for computational design to enhance its inhibitory potential using the Rosetta software suite.We designed EK1 variants and synthesized two N-terminally extended EK1 elongation peptides,and evaluated their inhibitory activity.The results revealed that the designed peptides enhanced inhibitory activity against diverse CoVs.Structural analysis and molecular dynamics simulations demonstrated that EK1 variants formed more robust interactions with HR1 of SARS-CoV-2,and these interactions were conserved across different CoVs.These findings underscore the utility of computational approaches in optimizing therapeutic peptides.
基金the US National Science Foundation(CMMI-1562244 and CMMI-1612843)。
文摘Burgeoning growth of tall buildings in urban areas around the world is placing new demands on their performance under winds.This involves selection of the building form that minimizes wind loads and structural topologies that efficiently transfer loads.Current practice is to search for optimal shapes,but this limits buildings with static or fixed form.Aerodynamic shape tailoring that consists of modifying the external form of the building has shown great promise in reducing wind loads and associated structural motions as reflected in the design of Taipei 101 and Burj Khalifa.In these buildings,corner modifications of the cross-section and tapering along the height are introduced.An appealing alternative is to design a building that can adapt its form to the changing complex wind environment in urban areas with clusters of tall buildings,i.e.,by implementing a dynamic facade.To leap beyond the static shape optimization,autonomous dynamic morphing of the building shape is advanced in this study,which is implemented through a cyber–physical system that fuses together sensing,computing,actuating,and engineering informatics.This approach will permit a building to intelligently morph its profile to minimize the source of dynamic wind load excitation,and holds the promise of revolutionizing tall buildings from conventional static to dynamic facades by taking advantage of the burgeoning advances in computational design.
基金the Start-up Grant from the School of Architecture at The Chinese University of Hong Kong[ARC]partially by the General Research Fund[RGC Ref.No.CUHK 14617122]from the Hong Kong Research Grants Council.
文摘This study is a digital form-finding and manual fabrication experiment in woven architectural design,with one traditional weaving style,Kagome,used to scale the craft up into an architectural-scale bamboo woven artifact.Kagome is a trihexagonal pattern employed in traditional bamboo basketry as a triaxial weaving system,resulting in an object with a self-bracing capacity without the use of fasteners owing to its interlacing lattices.Although existing studies and tools have addressed triaxial weaving design and representation,the current consideration of the advantages of weaving with bamboo is insufficient.To address this research gap,this study develops a computational design method based on studies on bamboo basketry.This allows for the representation and exploration of design geometries using combinations of regular triangular meshes for the fabrication of Kagome woven bamboo artifacts.A full-scale mock-up was fabricated to evaluate the effectiveness of the method.The mock-up demonstrated the self-bracing properties of Kagome,but there were discrepancies between the mock-up and the design.Factors affecting bamboo weaving on an architectural scale have been identified within this study to inform future research on woven bamboo structures.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52278008).
文摘Flexible housing resolves the fundamental conflicts between the long-standing structure and the evolving demands.We propose a computational method of optimizing the structural layout of high-rise residential buildings.Chinese high-rise apartment buildings have widely employed shear wall-frame structure in which one big room or multiple small rooms could occupy the same span.Fitting multiple floor plans into a fixed sparse scheme of shear walls and columns is feasible.We developed a computational framework to seek flexible structural schemes.A building scheme consists of a circulation core,shear walls,columns,and boundaries.The computer program automatically adapts floor plans to any drawn or generated scheme.Based on a large dataset of apartment layouts,the number of apartments that fit into a building scheme statistically reflects the flexibility of the scheme.If many hypothetical plans can fit into a wallframe structure in computer simulation,this structure could probably support several generations of unknown plans.Such a data-driven computational method provides the possibility of creating a one-to-many mapping between permanent structure and evolving apartment plans.
基金This research is funded by Directorate of Research and Development,Universitas Indonesia under Hibah PUTI Q1 Batch 22022(NKB-1149/UN2.RST/HKP.05.00/2022)awarded to Dr.Miktha Farid Alkadri S.Ars.,M.Ars.We also thank to Dr.Eng.Arnas,ST.,M.T.,from the Department of Mechanical Engineering,Universitas Indonesia,who has provided valuable input during the research process and HTflux team who has supplied a license for thermal bridge simulation.
文摘Identifying thermal bridges on building façades has been a great challenge for architects,especially during the conceptual design stage.This is not only due to the complexity of parameters when calculating thermal bridges,but also lack of feature integration between building energy simulation(BES)tools and the actual building conditions.For example,existing BES tools predominantly calculate thermal bridges only in steady state without considering the temperature dynamic behaviour of building outdoors.Consequently,relevant features such as thermal delay,decrement factor,and operative temperature are often neglected,and this can lead to miscalculation of energy consumption.This study then proposes an integrated method to calculate dynamic thermal bridges under transient conditions by incorporating field observations and computational simulations of thermal bridges.More specifically,the proposed method employs several measurement tools such as HOBO data logger to record the actual conditions of indoor and outdoor room temperature and thermal cameras to identify the surface temperature of selected building junctions.The actual datasets are then integrated with the simulation workflow developed in BES tools.This study ultimately enables architects not only to identify potential thermal bridges on existing building façades but also to support material and geometric exploration in early design phase.