Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed ...Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed Vehicular Communication Network(VCN)topologies.However,when the network is under attack,the communication delay may be much higher,and the stability of the system may not be guaranteed.This paper proposes a novel communication Delay Aware CACC with Dynamic Network Topologies(DADNT).The main idea is that for various communication delays,in order to maximize the traffic capacity while guaranteeing stability and minimizing the following error,the CACC should dynamically adjust the VCN network topology to achieve the minimum inter-vehicle spacing.To this end,a multi-objective optimization problem is formulated,and a 3-step Divide-And-Conquer sub-optimal solution(3DAC)is proposed.Simulation results show that with 3DAC,the proposed DADNT with CACC can reduce the inter-vehicle spacing by 5%,10%,and 14%,respectively,compared with the traditional CACC with fixed one-vehicle,two-vehicle,and three-vehicle look-ahead network topologies,thereby improving the traffic efficiency.展开更多
This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter...This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.展开更多
In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distribu...In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distributed communication delays. It is proved that the closed loop control system can reach consensus with an exponential convergence rate if and only if the topology is quasi-strongly connected. Simulation results are also provided to demonstrate the effectiveness of the proposed controller.展开更多
In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedba...In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.展开更多
To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make th...To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results.展开更多
In this paper,attitude coordinated tracking control algorithms for multiple spacecraft formation are investigated with consideration of parametric uncertainties,external disturbances,communication delays and actuator ...In this paper,attitude coordinated tracking control algorithms for multiple spacecraft formation are investigated with consideration of parametric uncertainties,external disturbances,communication delays and actuator saturation.Initially,a sliding mode delay-dependent attitude coordinated controller is proposed under bounded external disturbances.However,neither inertia uncertainty nor actuator constraint has been taken into account.Then,a robust saturated delaydependent attitude coordinated control law is further derived,where uncertainties and external disturbances are handled by Chebyshev neural networks(CNN).In addition,command filter technique is introduced to facilitate the backstepping design procedure,through which actuator saturation problem is solved.Thus the spacecraft in the formation are able to track the reference attitude trajectory even in the presence of time-varying communication delays.Rigorous analysis is presented by using Lyapunov-Krasovskii approach to demonstrate the stability of the closed-loop system under both control algorithms.Finally,the numerical examples are carried out to illustrate the efficiency of the theoretical results.展开更多
This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli...This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.展开更多
In this paper,we consider the containment consensus control problem for multi-agent systems with measurement noises and time-varying communication delays under directed networks.By using stochastic analysis tools and ...In this paper,we consider the containment consensus control problem for multi-agent systems with measurement noises and time-varying communication delays under directed networks.By using stochastic analysis tools and algebraic graph theory,we prove that the followers can converge to the convex hull spanned by the leaders in the sense of mean square if the allowed upper bound of the time-varying delays satisfies a certain sufficient condition.Moreover,the time-varying delays are asymmetric for each follower agent,and the time-delay-dependent consensus condition is derived.Finally,numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results.展开更多
This paper is concerned with the global stabilization of state-dependent switching neural networks(SDSNNs)viadiscontinuous event-triggered control with network-induced communication delay.Aiming at decreasing triggeri...This paper is concerned with the global stabilization of state-dependent switching neural networks(SDSNNs)viadiscontinuous event-triggered control with network-induced communication delay.Aiming at decreasing triggering times,a discontinuous event-trigger scheme is utilized to determine whether the sampling information is required to be sent outor not.Meanwhile,under the effect of communication delay,the trigger condition and SDSNNs are transformed into twotractable models by designing a fictitious delay function.Then,using the Lyapunov–Krasovskii stability theory,someinequality estimation techniques,and extended reciprocally convex combination method,two sufficient criteria are established for ensuring the global stabilization of the resulting closed-loop SDSNNs,respectively.A unified framework isderived that has the ability to handle the simultaneous existence of the communication delay,the properties of discontinuousevent-trigger scheme,as well as feedback controller design.Additionally,the developed results demonstrate a quantitativerelationship among the event trigger parameter,communication delay,and triggering times.Finally,two numerical examples are presented to illustrate the usefulness of the developed stabilization scheme.展开更多
This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication...This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication links,a novel distributed controller based on a cyclic pursuit strategy is developed in which each agent needs only its leading neighbour’s information.In contrast to existing works,we propose a set of new potential functions to deal with heterogeneous communication ranges and communication delays simultaneously.A new framework based on the admissible upper bound of the formation error is established so that both connectivity maintenance and order preservation can be achieved at the same time.It is shown that the multi-agent system can be driven to the desired circular formation as time goes to infinity under the proposed controller.Finally,the effectiveness of the proposed method is illustrated by some simulation examples.展开更多
This paper brings out a structured methodology for identifying intervals of communication time-delay where consensus in directed networks of multiple agents with high-order integrator dynamics is achieved. It is built...This paper brings out a structured methodology for identifying intervals of communication time-delay where consensus in directed networks of multiple agents with high-order integrator dynamics is achieved. It is built upon the stability analysis of a transformed consensus problem which preserves all the nonzero eigenvalues of the Laplacian matrix of the associated communication topology graph. It is shown that networks of agents with first-order integrator dynamics can be brought to consensus independently of communication delay, on the other hand, for agents with second-order integrator dynamics, the consensus is achieved independently of communication delay only if certain conditions axe satisfied. Conversely, if such conditions axe not satisfied, it is shown how to compute the intervals of communication delay where multiple agents with second-order or higher-order can be brought to consensus. The paper is ended by showing an interesting example of a network of agents with second-order integrator dynamics which is consensable on the first time-delay interval, but as the time-delay increases, it loses consensability on the second time-delay interval, then it becomes consensable again on the third time-delay interval, and finally it does not achieve consensus any more on the fourth time-delay interval. This example shows the importance of analyzing consensus with time-delay in different intervals.展开更多
This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems,...This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.展开更多
The modular design pattern revolutionizes the monolithic morphology of traditional spacecraft into the reconfigurable combination of modular units.However,due to the morphological changes,the effective takeover contro...The modular design pattern revolutionizes the monolithic morphology of traditional spacecraft into the reconfigurable combination of modular units.However,due to the morphological changes,the effective takeover control of the combination through multiple independent modules,including the controller and actuator modules,remains a challenge.In this paper,a robust takeover control scheme with high allocation accuracy,independent of precise inertia,is proposed for the reconfigurable combination in the presence of the inertia uncertainty,model parameters uncertainty,communication delay,and external disturbance.By reregulating the conditions for performance synthesis into a symmetric form with similar structure,a hybrid non-fragile H_(2)/H_(∞)controller is designed for handling two types of controller gain perturbations,achieving superior performance with less energy consumption through simultaneous perturbation suppression.Moreover,through temporarily storing the allocation signals in the initial stage to cover the upper bound of the communication delay,the proposed distributed dynamic allocation scheme enables the actuator modules to implement the control signals jointly to stabilize the combination.Distinguished from general allocators,the proposed high-precision allocation scheme under communication delay can not only ensure full exploitation of controller performance,but also dynamically adjust allocation coefficients based on energy consumption index of controller modules to prevent actuator saturation.Numerical simulations demonstrate the superiority of the proposed hybrid non-fragile controller and the allocation scheme.展开更多
The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communica...The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communication delay is usually ignored,so the path following performance of the AEV cannot be ensured.This article studies the observer-based path following control strategy for the AEV with the communication delay via a robust explicit model predictive control approach.Firstly,a projected interval unscented Kalman filter is proposed to observe the vehicle sideslip angle and yaw rate.The observer considers the state constraints during the observation process,and the robustness of the observer is also considered.Secondly,an explicit model predictive control is designed to reduce the computational complexity.Thirdly,considering the efficiency of the information transmission,the influence of the communication delay is considered when designing the observer-based path following control strategy.Finally,the numerical simulation and the hardware-in-the-loop test are conducted to examine the effectiveness and practicability of the proposed strategy.展开更多
Based on the four-element model,this paper reviewed the important research progress in vehicle platoon,compared the advantages and disadvantages of different models in each element longitudinally,and summarized the li...Based on the four-element model,this paper reviewed the important research progress in vehicle platoon,compared the advantages and disadvantages of different models in each element longitudinally,and summarized the linkage between each element horizontally.The stability criteria are briefly reviewed from three dimensions:local stability,string stability,and traffic flow stability.The impact of communication delay on vehicle platoon is quantitatively summarized from two aspects:the variation of controller gains and the variation of headway time values.Aiming at the inevitable communication delay in vehicle platoon,the compensation strategies are analyzed from five levels.(1)Optimizing the communication network structure.(2)Reconstructing acceleration information.(3)Tuning controller gains.(4)Constructing a multi-branch selection structure.(5)Improving the controller.The results show that,although these compensation strategies can alleviate the negative impact of communication delay to a certain extent,they also have some defects such as difficulty in adapting to complex and various real road conditions,poor accuracy and real-time performance,insufficient security,and limited application scenarios.It is necessary to further improve the accuracy and real-time performance of the device,design an encrypted and scalable network architecture to ensure communication security and adaptability,and conduct further real vehicle testing.展开更多
This paper investigates a consensus design problem for continuous-time first-order multiagent systems with uniform constant communication delay.Provided that the agent dynamic is unstable and the diagraph is undirecte...This paper investigates a consensus design problem for continuous-time first-order multiagent systems with uniform constant communication delay.Provided that the agent dynamic is unstable and the diagraph is undirected,sufficient conditions are derived to guarantee consensus.The key technique is the adoption of historical input information in the protocol.Especially,when agent's own historical input information is used in the protocol design,the consensus condition is constructed in terms of agent dynamic,communication delay,and the eigenratio of the network topology.Simulation result is presented to validate the effectiveness of the theoretical result.展开更多
This paper considers the tracking control problem of a wheeled mobile robot under situation of communication delay and consecutive data packet dropouts in the feedback channel. A tracking controller in discrete-time d...This paper considers the tracking control problem of a wheeled mobile robot under situation of communication delay and consecutive data packet dropouts in the feedback channel. A tracking controller in discrete-time domain for the case of ideal network condition is first derived, and then the networked predictive controller as well as two algorithms for dealing with communication delay and consecutive data packet dropouts are proposed. Simulation and experimental results verify the realizability and effectiveness of the proposed algorithms.展开更多
Compared with traditional consensus,this paper studies the generalized consensus problem for discrete-time multi-agent systems with directed topology and communication delay.Novel distributed consensus protocols with ...Compared with traditional consensus,this paper studies the generalized consensus problem for discrete-time multi-agent systems with directed topology and communication delay.Novel distributed consensus protocols with and without communication delay are designed.Based on the analysis of error dynamical system and graph theory,the generalized consensus is globally asymptotically achieved under suitable conditions without changing the zero row-sums property of Laplacian matrix in networks.Moreover,the sufficient conditions for generalized consensus of communication delay are obtained under directed connections.Finally,some simulations have been provided to verify the theoretical results.展开更多
In this paper, finite time consensus problem is discussed for multiple non-holonomic mobile agents with constant communication delay. The objective is to design non-smooth distributed control laws such that multiple n...In this paper, finite time consensus problem is discussed for multiple non-holonomic mobile agents with constant communication delay. The objective is to design non-smooth distributed control laws such that multiple non-holonomic mobile agents can be all in agreement within any given finite time larger than communication delay. The authors propose a novel switching control strategy with the help of Lyapunov-based method and graph theory.展开更多
This paper considers the leaderless consensus problem of linear time-invariant multi-agent systems with infinite distributed communication delays.A novel distributed low gain controller is proposed based on the soluti...This paper considers the leaderless consensus problem of linear time-invariant multi-agent systems with infinite distributed communication delays.A novel distributed low gain controller is proposed based on the solution to a parametric algebraic Riccati equation.It is shown via the newly developed Lyapunov-like method that not only the consensus of linear time-invariant multi-agent systems can be achieved exponentially under some mild assumptions but also an estimate of the exponential convergence rate of consensus is given in this work.The Lyapunovlike method is also extended to handle a special case of linear time-varying multi-agent systems.In addition,the obtained results include the results on the leaderless consensus of linear multiagent systems with bounded distributed communication delays as special cases.To the best of our knowledge,this is thefirst work that develops the Lyapunov-like method for the leaderless consensus problems of both time-invariant and time-varying linear multi-agent systems with infinite distributed communication delays.Finally,a numerical example is presented to illustrate the effectiveness of the proposed controller.展开更多
基金supported by the National Natural Science Foundation of China under Grant U21A20449in part by Jiangsu Provincial Key Research and Development Program under Grant BE2021013-2。
文摘Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed Vehicular Communication Network(VCN)topologies.However,when the network is under attack,the communication delay may be much higher,and the stability of the system may not be guaranteed.This paper proposes a novel communication Delay Aware CACC with Dynamic Network Topologies(DADNT).The main idea is that for various communication delays,in order to maximize the traffic capacity while guaranteeing stability and minimizing the following error,the CACC should dynamically adjust the VCN network topology to achieve the minimum inter-vehicle spacing.To this end,a multi-objective optimization problem is formulated,and a 3-step Divide-And-Conquer sub-optimal solution(3DAC)is proposed.Simulation results show that with 3DAC,the proposed DADNT with CACC can reduce the inter-vehicle spacing by 5%,10%,and 14%,respectively,compared with the traditional CACC with fixed one-vehicle,two-vehicle,and three-vehicle look-ahead network topologies,thereby improving the traffic efficiency.
基金supported by the Na⁃tional Key R&D Program of China(No.2022YFC2204800)the Graduate Student Independent Exploration and Innovation Program of Central South University(No.2024ZZTS 0767).
文摘This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.
文摘In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distributed communication delays. It is proved that the closed loop control system can reach consensus with an exponential convergence rate if and only if the topology is quasi-strongly connected. Simulation results are also provided to demonstrate the effectiveness of the proposed controller.
基金Project supported by the National Natural Science Foundation of China(Grant No.61004101)the Natural Science Foundation Program of Guangxi Province,China(Grant No.2015GXNSFBB139002)+1 种基金the Graduate Innovation Project of Guilin University of Electronic Technology,China(Grant No.GDYCSZ201472)the Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,China
文摘In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61104092,61134007,and61203147the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results.
基金co-supported by the National Natural Science Foundation of China(Nos.61633003 and 61522301)Heilongjiang Province Science Foundation for Youths(Nos.QC2012C024 and QC2015064)the Research Fund for Doctoral Program of Higher Education of China(No.20132302110028)
文摘In this paper,attitude coordinated tracking control algorithms for multiple spacecraft formation are investigated with consideration of parametric uncertainties,external disturbances,communication delays and actuator saturation.Initially,a sliding mode delay-dependent attitude coordinated controller is proposed under bounded external disturbances.However,neither inertia uncertainty nor actuator constraint has been taken into account.Then,a robust saturated delaydependent attitude coordinated control law is further derived,where uncertainties and external disturbances are handled by Chebyshev neural networks(CNN).In addition,command filter technique is introduced to facilitate the backstepping design procedure,through which actuator saturation problem is solved.Thus the spacecraft in the formation are able to track the reference attitude trajectory even in the presence of time-varying communication delays.Rigorous analysis is presented by using Lyapunov-Krasovskii approach to demonstrate the stability of the closed-loop system under both control algorithms.Finally,the numerical examples are carried out to illustrate the efficiency of the theoretical results.
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)of the UK(No.GR/S27658/01)the Royal Society of the UK and the Alexander von Humboldt Foundation of Germany
文摘This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.11102019)the Aeronautical Science Foundation of China(Grant No.2013ZC72006)the Research Foundation of Beijing Institute of Technology,China
文摘In this paper,we consider the containment consensus control problem for multi-agent systems with measurement noises and time-varying communication delays under directed networks.By using stochastic analysis tools and algebraic graph theory,we prove that the followers can converge to the convex hull spanned by the leaders in the sense of mean square if the allowed upper bound of the time-varying delays satisfies a certain sufficient condition.Moreover,the time-varying delays are asymmetric for each follower agent,and the time-delay-dependent consensus condition is derived.Finally,numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62003194,61973199,61573008,and 61973200).
文摘This paper is concerned with the global stabilization of state-dependent switching neural networks(SDSNNs)viadiscontinuous event-triggered control with network-induced communication delay.Aiming at decreasing triggering times,a discontinuous event-trigger scheme is utilized to determine whether the sampling information is required to be sent outor not.Meanwhile,under the effect of communication delay,the trigger condition and SDSNNs are transformed into twotractable models by designing a fictitious delay function.Then,using the Lyapunov–Krasovskii stability theory,someinequality estimation techniques,and extended reciprocally convex combination method,two sufficient criteria are established for ensuring the global stabilization of the resulting closed-loop SDSNNs,respectively.A unified framework isderived that has the ability to handle the simultaneous existence of the communication delay,the properties of discontinuousevent-trigger scheme,as well as feedback controller design.Additionally,the developed results demonstrate a quantitativerelationship among the event trigger parameter,communication delay,and triggering times.Finally,two numerical examples are presented to illustrate the usefulness of the developed stabilization scheme.
基金supported in part by the National Natural Science Foundation of China(61773327,62273182)the Research Grants Council of the Hong Kong Special Administrative Region of China(CityU/11217619)the Fundamental Research Funds for the Central Universities(30921011213)。
文摘This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication links,a novel distributed controller based on a cyclic pursuit strategy is developed in which each agent needs only its leading neighbour’s information.In contrast to existing works,we propose a set of new potential functions to deal with heterogeneous communication ranges and communication delays simultaneously.A new framework based on the admissible upper bound of the formation error is established so that both connectivity maintenance and order preservation can be achieved at the same time.It is shown that the multi-agent system can be driven to the desired circular formation as time goes to infinity under the proposed controller.Finally,the effectiveness of the proposed method is illustrated by some simulation examples.
基金supported by the Brazilian agencies CNPq,CAPES,and FAPEMIG
文摘This paper brings out a structured methodology for identifying intervals of communication time-delay where consensus in directed networks of multiple agents with high-order integrator dynamics is achieved. It is built upon the stability analysis of a transformed consensus problem which preserves all the nonzero eigenvalues of the Laplacian matrix of the associated communication topology graph. It is shown that networks of agents with first-order integrator dynamics can be brought to consensus independently of communication delay, on the other hand, for agents with second-order integrator dynamics, the consensus is achieved independently of communication delay only if certain conditions axe satisfied. Conversely, if such conditions axe not satisfied, it is shown how to compute the intervals of communication delay where multiple agents with second-order or higher-order can be brought to consensus. The paper is ended by showing an interesting example of a network of agents with second-order integrator dynamics which is consensable on the first time-delay interval, but as the time-delay increases, it loses consensability on the second time-delay interval, then it becomes consensable again on the third time-delay interval, and finally it does not achieve consensus any more on the fourth time-delay interval. This example shows the importance of analyzing consensus with time-delay in different intervals.
基金Project supported by the Key Program for the National Natural Science Foundation of China(Grant No.61333003)the General Program for the National Natural Science Foundation of China(Grant No.61273104)
文摘This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.
基金co-supported by the National Natural Science Foundation of China(No.12372048)the China Postdoctoral Science Foundation(No.2023M742835)+3 种基金the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515011421)the Aeronautical Science Foundation of China(No.2022Z004053001)the Fundamental Research Funds for the Central Universities,China(No.D5000210833)the Young Talent Fund of Association for Science and Technology in Shaanxi,China(No.20220509)。
文摘The modular design pattern revolutionizes the monolithic morphology of traditional spacecraft into the reconfigurable combination of modular units.However,due to the morphological changes,the effective takeover control of the combination through multiple independent modules,including the controller and actuator modules,remains a challenge.In this paper,a robust takeover control scheme with high allocation accuracy,independent of precise inertia,is proposed for the reconfigurable combination in the presence of the inertia uncertainty,model parameters uncertainty,communication delay,and external disturbance.By reregulating the conditions for performance synthesis into a symmetric form with similar structure,a hybrid non-fragile H_(2)/H_(∞)controller is designed for handling two types of controller gain perturbations,achieving superior performance with less energy consumption through simultaneous perturbation suppression.Moreover,through temporarily storing the allocation signals in the initial stage to cover the upper bound of the communication delay,the proposed distributed dynamic allocation scheme enables the actuator modules to implement the control signals jointly to stabilize the combination.Distinguished from general allocators,the proposed high-precision allocation scheme under communication delay can not only ensure full exploitation of controller performance,but also dynamically adjust allocation coefficients based on energy consumption index of controller modules to prevent actuator saturation.Numerical simulations demonstrate the superiority of the proposed hybrid non-fragile controller and the allocation scheme.
基金Supported by the National Key Research and Development Program of China(Grant No.2023YFE0204700)the National Natural Science Foundation of China(Grant Nos.52472402 and 52302469)+7 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012327 and 2024A1515010449)the research grant of the University of Macao(Grant No.MYRG GRG2023-00235-FST-UMDF)Shandong Provincial Natural Science Foundation(Grant No.ZR2023ME133)the Fundamental Research Funds for the Central Universities(Grant No.N2403012)the Science and Technology Development Fund of Macao SAR(Grant No.0091/2023/AMJ)the China Postdoctoral Science Foundation(Grant Nos.2023M740538 and AM2024003)the Zhuhai Science and Technology Innovation Bureau(Grant No.2220004003107)the Yunfu Science and Technology Project(Grant No.2024090202).
文摘The existing research on the path following of the autonomous electric vehicle(AEV)mainly focuses on the path planning and the kinematic control.However,the dynamic control with the state observation and the communication delay is usually ignored,so the path following performance of the AEV cannot be ensured.This article studies the observer-based path following control strategy for the AEV with the communication delay via a robust explicit model predictive control approach.Firstly,a projected interval unscented Kalman filter is proposed to observe the vehicle sideslip angle and yaw rate.The observer considers the state constraints during the observation process,and the robustness of the observer is also considered.Secondly,an explicit model predictive control is designed to reduce the computational complexity.Thirdly,considering the efficiency of the information transmission,the influence of the communication delay is considered when designing the observer-based path following control strategy.Finally,the numerical simulation and the hardware-in-the-loop test are conducted to examine the effectiveness and practicability of the proposed strategy.
基金supported in part by the Fundamental Research Funds for the Central Universities,CHD,under grant 300102243713in part by the National Natural Science Foundation of China under grant 61973045+2 种基金in part by the Natural Science Basic Research Program of Shaanxi Province under grant 2023-JC-JQ-45in part by the Natural Science Basic Research Program of Shaanxi under grant 2023-JC-QN-0667in part by the Fundamental Research Funds for the Central Universities,CHD,under grant 300102242102。
文摘Based on the four-element model,this paper reviewed the important research progress in vehicle platoon,compared the advantages and disadvantages of different models in each element longitudinally,and summarized the linkage between each element horizontally.The stability criteria are briefly reviewed from three dimensions:local stability,string stability,and traffic flow stability.The impact of communication delay on vehicle platoon is quantitatively summarized from two aspects:the variation of controller gains and the variation of headway time values.Aiming at the inevitable communication delay in vehicle platoon,the compensation strategies are analyzed from five levels.(1)Optimizing the communication network structure.(2)Reconstructing acceleration information.(3)Tuning controller gains.(4)Constructing a multi-branch selection structure.(5)Improving the controller.The results show that,although these compensation strategies can alleviate the negative impact of communication delay to a certain extent,they also have some defects such as difficulty in adapting to complex and various real road conditions,poor accuracy and real-time performance,insufficient security,and limited application scenarios.It is necessary to further improve the accuracy and real-time performance of the device,design an encrypted and scalable network architecture to ensure communication security and adaptability,and conduct further real vehicle testing.
基金supported by the Taishan Scholar Construction Engineering by Shandong Government,the National Natural Science Foundation of China under Grant Nos.61120106011 and 61203029
文摘This paper investigates a consensus design problem for continuous-time first-order multiagent systems with uniform constant communication delay.Provided that the agent dynamic is unstable and the diagraph is undirected,sufficient conditions are derived to guarantee consensus.The key technique is the adoption of historical input information in the protocol.Especially,when agent's own historical input information is used in the protocol design,the consensus condition is constructed in terms of agent dynamic,communication delay,and the eigenratio of the network topology.Simulation result is presented to validate the effectiveness of the theoretical result.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61333033,61690210 and 61690212
文摘This paper considers the tracking control problem of a wheeled mobile robot under situation of communication delay and consecutive data packet dropouts in the feedback channel. A tracking controller in discrete-time domain for the case of ideal network condition is first derived, and then the networked predictive controller as well as two algorithms for dealing with communication delay and consecutive data packet dropouts are proposed. Simulation and experimental results verify the realizability and effectiveness of the proposed algorithms.
基金the National Science Foundation of China under Grant No.61772013the Natural Science Foundation of Jiangsu Province under Grant No.BK20181342。
文摘Compared with traditional consensus,this paper studies the generalized consensus problem for discrete-time multi-agent systems with directed topology and communication delay.Novel distributed consensus protocols with and without communication delay are designed.Based on the analysis of error dynamical system and graph theory,the generalized consensus is globally asymptotically achieved under suitable conditions without changing the zero row-sums property of Laplacian matrix in networks.Moreover,the sufficient conditions for generalized consensus of communication delay are obtained under directed connections.Finally,some simulations have been provided to verify the theoretical results.
基金supported by the Young Faculty Foundation of Tianjin University under Grant No.TJUYFF-08B73
文摘In this paper, finite time consensus problem is discussed for multiple non-holonomic mobile agents with constant communication delay. The objective is to design non-smooth distributed control laws such that multiple non-holonomic mobile agents can be all in agreement within any given finite time larger than communication delay. The authors propose a novel switching control strategy with the help of Lyapunov-based method and graph theory.
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region of China(CityU/11201120).
文摘This paper considers the leaderless consensus problem of linear time-invariant multi-agent systems with infinite distributed communication delays.A novel distributed low gain controller is proposed based on the solution to a parametric algebraic Riccati equation.It is shown via the newly developed Lyapunov-like method that not only the consensus of linear time-invariant multi-agent systems can be achieved exponentially under some mild assumptions but also an estimate of the exponential convergence rate of consensus is given in this work.The Lyapunovlike method is also extended to handle a special case of linear time-varying multi-agent systems.In addition,the obtained results include the results on the leaderless consensus of linear multiagent systems with bounded distributed communication delays as special cases.To the best of our knowledge,this is thefirst work that develops the Lyapunov-like method for the leaderless consensus problems of both time-invariant and time-varying linear multi-agent systems with infinite distributed communication delays.Finally,a numerical example is presented to illustrate the effectiveness of the proposed controller.