期刊文献+
共找到14,965篇文章
< 1 2 250 >
每页显示 20 50 100
船海学术语篇摘要中名词词组形式表征的认知分析——以“Classifier +Thing”为例
1
作者 田苗 张宇新 《山东外语教学》 北大核心 2025年第3期19-29,共11页
“Classifier+Thing”结构在船海学术语篇摘要中俯拾皆是,其认知路径和理据亟待深入探究。本研究聚焦“Classifier+Thing”名词词组,分析船海学术语篇摘要中该词组的认知路径及理据。研究发现:(1)“Classifier+Thing”在概念结构-语义... “Classifier+Thing”结构在船海学术语篇摘要中俯拾皆是,其认知路径和理据亟待深入探究。本研究聚焦“Classifier+Thing”名词词组,分析船海学术语篇摘要中该词组的认知路径及理据。研究发现:(1)“Classifier+Thing”在概念结构-语义层的认知过程体现了语法转喻机制,船海摘要语料库中主要通过“过程-动作”“过程-结果”“用途-结构”实现概念结构-语义间的动、静态转换;(2)“Classifier+Thing”的形式表征过程为先确定“核心词(Thing)”,后在大脑词库中匹配“类别语(Classifier)”,遵循认知经济性原则;(3)该词组形式表征过程受学术语篇类型影响,遵循受限语言说。研究结果一定程度上深化了对学术语篇中名词词组的认识,提升学界对于船海学科学术话语的关注。 展开更多
关键词 classifier+Thing” 认知路径及理据 学术摘要 名词词组
在线阅读 下载PDF
某钢铁企业35 kV系统SVC装置改造设计
2
作者 徐萍 范思哲 +2 位作者 陈旭冉 陈圣博 周文庆 《电工技术》 2025年第8期226-228,共3页
研究现有LF炉负荷、功率因数及SVC装置现状,根据新上LF炉负荷及功率因数,改造原有SVC装置,以更好地抑制谐波,保证电能质量,提高功率因数,减少无功损耗。
关键词 svc装置 供电质量 减少无功损耗
在线阅读 下载PDF
采用SVC与TCSC抑制风电次同步振荡
3
作者 韩杰 王宝华 黄佳健 《计算机仿真》 2025年第2期62-67,共6页
双馈风电机组(DFIG)经串联电容补偿线路并网可能会引发次同步振荡,为了抑制风电并网次同步振荡,采用静止无功补偿器(SVC)和可控硅控制串联补偿器(TCSC)进行联合补偿,设计了基于粒子群优化的控制器来抑制次同步振荡。在Matlab/Simulink... 双馈风电机组(DFIG)经串联电容补偿线路并网可能会引发次同步振荡,为了抑制风电并网次同步振荡,采用静止无功补偿器(SVC)和可控硅控制串联补偿器(TCSC)进行联合补偿,设计了基于粒子群优化的控制器来抑制次同步振荡。在Matlab/Simulink中搭建了风电并网模型,通过仿真验证了SVC与TCSC对风电场次同步振荡的抑制能力。结果表明,采用SVC与TCSC协调控制的系统在不同风速和串补度的情况下,可以有效的抑制风电并网的次同步振荡,改善系统的电气阻尼,提升风力发电系统的稳定性。 展开更多
关键词 静止无功补偿器 可控串联补偿器 次同步振荡 粒子群优化
在线阅读 下载PDF
Drone-Based Public Surveillance Using 3D Point Clouds and Neuro-Fuzzy Classifier
4
作者 Yawar Abbas Aisha Ahmed Alarfaj +3 位作者 Ebtisam Abdullah Alabdulqader Asaad Algarni Ahmad Jalal Hui Liu 《Computers, Materials & Continua》 2025年第3期4759-4776,共18页
Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions f... Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions from such videos poses the following challenges:variations of human motion,the complexity of backdrops,motion blurs,occlusions,and restricted camera angles.This research presents a human activity recognition system to address these challenges by working with drones’red-green-blue(RGB)videos.The first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while reducing background interference before converting from RGB to grayscale images.The YOLO(You Only Look Once)algorithm detects and extracts humans from each frame,obtaining their skeletons for further processing.The joint angles,displacement and velocity,histogram of oriented gradients(HOG),3D points,and geodesic Distance are included.These features are optimized using Quadratic Discriminant Analysis(QDA)and utilized in a Neuro-Fuzzy Classifier(NFC)for activity classification.Real-world evaluations on the Drone-Action,Unmanned Aerial Vehicle(UAV)-Gesture,and Okutama-Action datasets substantiate the proposed system’s superiority in accuracy rates over existing methods.In particular,the system obtains recognition rates of 93%for drone action,97%for UAV gestures,and 81%for Okutama-action,demonstrating the system’s reliability and ability to learn human activity from drone videos. 展开更多
关键词 Activity recognition geodesic distance pattern recognition neuro fuzzy classifier
在线阅读 下载PDF
A dual-approach to genomic predictions:leveraging convolutional networks and voting classifiers
5
作者 Raghad K.Mohammed Azmi Tawfeq Hussein Alrawi Ali Jbaeer Dawood 《Biomedical Engineering Communications》 2025年第1期3-11,共9页
Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the ident... Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the identification of risk factors associated with genetic disorders.Methods:Our study introduces a novel two-tiered analytical framework to raise the precision and reliability of genetic data interpretation.It is initiated by extracting and analyzing salient features from DNA sequences through a CNN-based feature analysis,taking advantage of the power inherent in Convolutional neural networks(CNNs)to attain complex patterns and minute mutations in genetic data.This study embraces an elite collection of machine learning classifiers interweaved through a stern voting mechanism,which synergistically joins the predictions made from multiple classifiers to generate comprehensive and well-balanced interpretations of the genetic data.Results:This state-of-the-art method was further tested by carrying out an empirical analysis on a variants'dataset of DNA sequences taken from patients affected by breast cancer,juxtaposed with a control group composed of healthy people.Thus,the integration of CNNs with a voting-based ensemble of classifiers returned outstanding outcomes,with performance metrics accuracy,precision,recall,and F1-scorereaching the outstanding rate of 0.88,outperforming previous models.Conclusions:This dual accomplishment underlines the transformative potential that integrating deep learning techniques with ensemble machine learning might provide in real added value for further genetic diagnostics and prognostics.These results from this study set a new benchmark in the accuracy of disease diagnosis through DNA sequencing and promise future studies on improved personalized medicine and healthcare approaches with precise genetic information. 展开更多
关键词 CNN DNA sequencing ensemble machine learning genetic disease voting classifier
在线阅读 下载PDF
浅谈TCR型SVC在EAF电炉系统中的技术应用
6
作者 张帅 《冶金与材料》 2025年第8期118-120,共3页
近年来,EAF电炉以其节能高效、工艺灵活等优势在钢铁行业得到广泛应用。但在EAF电炉冶炼过程中,大量的非线性负荷注入电网会产生各种高次谐波,降低系统功率因数,增大系统电压损耗,引发电压波动或闪变,污染电网。因此,应用TCR型SVC来改善... 近年来,EAF电炉以其节能高效、工艺灵活等优势在钢铁行业得到广泛应用。但在EAF电炉冶炼过程中,大量的非线性负荷注入电网会产生各种高次谐波,降低系统功率因数,增大系统电压损耗,引发电压波动或闪变,污染电网。因此,应用TCR型SVC来改善EAF电炉系统的运行环境非常必要。通过介绍TCR型SVC基本原理、结构设计、技术要点,给出了TCR型SVC实际运行监控方案,确保EAF电炉系统稳定运行。 展开更多
关键词 EAF电炉 非线性负荷 电压波动或闪变 TCR型svc
在线阅读 下载PDF
面向超低频振荡的水电调速器与SVC附加频率控制参数联合优化 被引量:1
7
作者 郭亮 赵静 +5 位作者 邓志森 杨小磊 史华勃 吕飞鹏 王渝红 李沛阳 《四川电力技术》 2024年第3期17-21,38,共6页
互联电网超低频振荡抑制对系统安全稳定运行至关重要,现有研究仅考虑水电调试器PI控制参数优化的措施,可能导致水电调频能力降低。随着电网中静止无功补偿器(SVC)数量的显著增长,通过SVC附加频率控制为超低频振荡抑制提供了新的思路,于... 互联电网超低频振荡抑制对系统安全稳定运行至关重要,现有研究仅考虑水电调试器PI控制参数优化的措施,可能导致水电调频能力降低。随着电网中静止无功补偿器(SVC)数量的显著增长,通过SVC附加频率控制为超低频振荡抑制提供了新的思路,于是提出了一种SVC附加频率控制与水电调速器PI参数联合优化方法。首先,建立了包含水轮机和SVC的单机单负荷系统等值模型,分析SVC的附加频率控制原理,并分析所提模型对系统超低频振荡的抑制作用;在此基础上,以超低频振荡阻尼系数和水电机组一次调频性能为优化目标,通过优化设计控制器参数以提升系统整体的超低频振荡抑制能力;最后,在PSCAD/EMTDC平台上搭建了水电机组和SVC仿真模型,对所提方法进行有效性验证。仿真结果表明,该方法可有效提升高比例水电电网超低频振荡阻尼能力,同时提升水电机组调频能力。 展开更多
关键词 水电调速器 svc附加频率控制 超低频振荡 调频能力
在线阅读 下载PDF
基于ERF和BO-SVC的交流接触器触头故障识别方法 被引量:1
8
作者 刘树鑫 祁新智 吕先锋 《电力工程技术》 北大核心 2024年第6期173-182,共10页
针对交流接触器各状态样本不均衡导致故障状态识别精度低和特征冗余度高的问题,文中提出一种基于嵌入式随机森林(embedded random forest,ERF)和贝叶斯优化非线性支持向量机(Bayesian optimization-support vector classification,BO-S... 针对交流接触器各状态样本不均衡导致故障状态识别精度低和特征冗余度高的问题,文中提出一种基于嵌入式随机森林(embedded random forest,ERF)和贝叶斯优化非线性支持向量机(Bayesian optimization-support vector classification,BO-SVC)的复合识别方法。首先,通过交流接触器全寿命试验平台提取接触器状态特征,并针对各状态样本间不均衡导致识别精度低现象,提出一种基于权重法的样本均衡处理策略。然后,使用ERF对均衡后样本进行特征选择和降维,提取最能表征触头状态变化规律的最优特征。最后,将最优特征输入到BO-SVC识别模型,与另外2种代表性模型作为对比,以精确率、召回率和F1-分数3个指标对各模型性能进行评估。在3个指标上,文中方法的结果分别达到95.22%、98.91%和97.01%,均高于对比模型。以F1-分数为指标,在4组样本上对各模型性能进行测试,结果表明文中方法的F1-分数平均高出对比模型0.56%和27.28%,验证文中研究有效解决了交流接触器特征冗余和故障识别精度低的问题。 展开更多
关键词 交流接触器 故障识别 样本不均衡 特征选择 嵌入式随机森林(ERF) 贝叶斯优化非线性支持向量机(BO-svc)
在线阅读 下载PDF
基于ISSA-SVC的配电网高损台区窃电检测方法研究 被引量:7
9
作者 赖健 许志浩 +3 位作者 康兵 王宗耀 丁贵立 袁小翠 《电力系统保护与控制》 EI CSCD 北大核心 2024年第12期104-112,共9页
针对现有的基于机器学习的用户窃电行为检测方法检测效率和准确率不高等问题,提出一种基于改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量分类机(support vector classification,SVC)参数的ISSA-SVC窃电检测模... 针对现有的基于机器学习的用户窃电行为检测方法检测效率和准确率不高等问题,提出一种基于改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量分类机(support vector classification,SVC)参数的ISSA-SVC窃电检测模型。首先,该模型通过分析台区每一天的线损率与窃电电量、窃电用户计量电量与窃电电量、窃电用户计量电量与线损电量、台区供电量与窃电电量、用户最近一天用电量和相邻几天用电量、具有相似特征用户用电量曲线的相关性提取用户窃电特征参量。其次,利用动态时间规整(dynamic time warping,DTW)方法计算得到它们的相关系数。最后,采用ISSA优化SVC惩罚参数C和核参数g,并对台区内窃电用户进行检测。仿真算例与实际电网数据分析表明,所提方法与传统的窃电检测方法相比,具有更高的效率和准确率。 展开更多
关键词 机器学习 窃电检测 用户窃电特征参量 相关系数 ISSA-svc
在线阅读 下载PDF
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
10
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
在线阅读 下载PDF
基于IPSO-SVC的含风电配电网稳压控制策略 被引量:1
11
作者 张群峰 匡洪海 +3 位作者 林海东 王俊 于锡琪 李星宇 《电工技术》 2024年第3期16-21,共6页
当配电网含风电接入时,电能质量会受到较大的影响。为解决不同风速下风力机出力不同影响配电网电压稳定性的问题,利用静止无功补偿器提高含风电配电网电压稳定性。在考虑不同风速场景下,引入改进粒子群算法并以配电网系统有功损耗最小... 当配电网含风电接入时,电能质量会受到较大的影响。为解决不同风速下风力机出力不同影响配电网电压稳定性的问题,利用静止无功补偿器提高含风电配电网电压稳定性。在考虑不同风速场景下,引入改进粒子群算法并以配电网系统有功损耗最小为目标函数,优化SVC控制参数,改善SVC对电压的控制性能。以含风电IEEE 33节点算例进行仿真计算,验证了该算法的正确性和可行性。 展开更多
关键词 含风电配电网 静止无功补偿器 双馈异步风力发电机 改进粒子群算法 稳压控制
在线阅读 下载PDF
RefluxClassifier分离细颗粒的技术发展与应用前景 被引量:1
12
作者 马梦绮 张志远 +2 位作者 荆隆隆 方佳豪 李延锋 《有色金属(选矿部分)》 CAS 2024年第1期106-115,共10页
矿石综采技术带来诸多便利的同时,也导致了矿石中细颗粒比例增多。细颗粒分离成为了国内外矿物加工领域面临的难题。由于细颗粒质量小、比表面积大、表面能高、容易团聚,进而难以有效分离。本世纪初,由澳大利亚学者Galvin所研制的Reflux... 矿石综采技术带来诸多便利的同时,也导致了矿石中细颗粒比例增多。细颗粒分离成为了国内外矿物加工领域面临的难题。由于细颗粒质量小、比表面积大、表面能高、容易团聚,进而难以有效分离。本世纪初,由澳大利亚学者Galvin所研制的RefluxClassifier(回流分级机,简称RC)作为一种新型重力分选设备进入到矿物加工设备行列。该设备由液固流化床与倾斜通道组成,分为垂直段与倾斜段,具有操作简单、成本低廉和高效节能等优点。据研究,RC因其特殊的结构与工作机理可以有效解决细颗粒分离问题。本文首先归纳了国内外有关RC的理论研究,详细描述了RC倾斜段中颗粒在流体中的运动状态,阐明了倾斜通道内颗粒运动与流体流动特性之间的关系,简要分析了颗粒性质与流体之间的力与速度关系。此外,本文对目前现有RC的水速预测模型(经典动力学模型、经验模型、弱化粒度模型、平衡模型)进行了总结,并综合分析了各模型的适用范围。结合试验案例,介绍了RC在煤炭、黑金属、砂石骨料等领域的应用现状,举例分析不同试验条件下RC对细颗粒回收的分离情况。最后结合我国资源现状与现代设备发展趋势,提出如何深入优化RC分选理论模型、拓展更广阔的应用领域是国内外学者的长期研究目标,并展望RC在工业范围内的全面推广。 展开更多
关键词 Refluxclassifier 细粒回收 重力分选 颗粒运动
在线阅读 下载PDF
基于Extra Tree Classifier的水质安全建模预测
13
作者 杨丽佳 陈新房 +1 位作者 赵晗清 汪世伟 《电脑与电信》 2024年第6期57-61,共5页
随着工业化和城市化的快速发展,水质安全问题日益受到关注。本研究利用一个包含7999条数据记录的水质分析数据集,涵盖多种化学物质浓度测量值与安全阈值,以及“是否安全”分类变量,运用Extr aTree Classifier模型进行水质安全建模预测... 随着工业化和城市化的快速发展,水质安全问题日益受到关注。本研究利用一个包含7999条数据记录的水质分析数据集,涵盖多种化学物质浓度测量值与安全阈值,以及“是否安全”分类变量,运用Extr aTree Classifier模型进行水质安全建模预测及数据分析。本研究目的在于提供一个可靠的模型,以帮助决策者和相关部门更好地监测和维护水质安全,从而保障公众健康和环境可持续发展。 展开更多
关键词 水质安全 Lazy Predict Extra Tree classifier k折交叉验证 机器学习
在线阅读 下载PDF
Using Cross Entropy as a Performance Metric for Quantifying Uncertainty in DNN Image Classifiers: An Application to Classification of Lung Cancer on CT Images
14
作者 Eri Matsuyama Masayuki Nishiki +1 位作者 Noriyuki Takahashi Haruyuki Watanabe 《Journal of Biomedical Science and Engineering》 2024年第1期1-12,共12页
Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation... Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. . 展开更多
关键词 Cross Entropy Performance Metrics DNN Image classifiers Lung Cancer Prediction Uncertainty
在线阅读 下载PDF
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
15
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
在线阅读 下载PDF
An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features
16
作者 Saad M.Darwish Abdul Rahman M.Sabri +1 位作者 Dhafar Hamed Abd Adel A.Elzoghabi 《Computer Systems Science & Engineering》 2024年第6期1595-1624,共30页
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient... The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%. 展开更多
关键词 Political articles orientation detection CatBoost classifier multi-level features context-based classification social networks machine learning stylometric features
在线阅读 下载PDF
基于C.P.Steinmetz平衡化原理PI控制方法的SVC系统研究
17
作者 周斌 李博 《变频器世界》 2024年第4期77-81,共5页
瞬时电流控制补偿策略来实现三相平衡化和功率因数的补偿,从理论上分析了这种方法的正确性;然后,用MATLAB/Simulink进行了仿真,通过仿真和实验发现,静止无功补偿控制系统具有一定的合理性和先进性,能够达到较快的响应和较好的补偿精度,... 瞬时电流控制补偿策略来实现三相平衡化和功率因数的补偿,从理论上分析了这种方法的正确性;然后,用MATLAB/Simulink进行了仿真,通过仿真和实验发现,静止无功补偿控制系统具有一定的合理性和先进性,能够达到较快的响应和较好的补偿精度,可实现对三相不平衡负载的快速动态无功补偿,达到了预期的补偿效果。 展开更多
关键词 svc 不平衡负载补偿 模拟与实验
在线阅读 下载PDF
Mammogram Classification with HanmanNets Using Hanman Transform Classifier
18
作者 Jyoti Dabass Madasu Hanmandlu +1 位作者 Rekha Vig Shantaram Vasikarla 《Journal of Modern Physics》 2024年第7期1045-1067,共23页
Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep infor... Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep information set features from ResNet by modifying its kernel functions to yield Type-1 HanmanNets and then AlexNet, GoogLeNet and VGG-16 by changing their feature maps to yield Type-2 HanmanNets. The two types of HanmanNets exploit the final feature maps of these architectures in the generation of deep information set features from mammograms for their classification using the Hanman Transform Classifier. In this work, the characteristics of the abnormality present in the mammograms are captured using the above network architectures that help derive the features of HanmanNets based on information set concept and their performance is compared via the classification accuracies. The highest accuracy of 100% is achieved for the multi-class classifications on the mini-MIAS database thus surpassing the results in the literature. Validation of the results is done by the expert radiologists to show their clinical relevance. 展开更多
关键词 MAMMOGRAMS ResNet 18 Hanman Transform classifier ABNORMALITY DIAGNOSIS VGG-16 AlexNet GoogleNet HanmanNets
在线阅读 下载PDF
Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection
19
作者 Islam Zada Mohammed Naif Alatawi +4 位作者 Syed Muhammad Saqlain Abdullah Alshahrani Adel Alshamran Kanwal Imran Hessa Alfraihi 《Computers, Materials & Continua》 SCIE EI 2024年第8期2917-2939,共23页
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malwar... Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats. 展开更多
关键词 Security and privacy challenges in the context of requirements engineering supervisedmachine learning malware detection windows systems comparative analysis Gaussian Naive Bayes K Nearest Neighbors Stochastic Gradient Descent classifier Decision Tree
在线阅读 下载PDF
基于卷积神经网络组合算法的卷烟牌号在线分类识别研究 被引量:1
20
作者 李石头 廖付 +8 位作者 吴继忠 张军 徐梦瑶 丁伟 李永生 李淑彪 何文苗 王辉 毕一鸣 《分析测试学报》 北大核心 2025年第3期514-520,共7页
为探究烟丝在线近红外光谱与卷烟牌号间的关系,提出了一种基于ResNeXt18-CNN-LightGBM混合模型的卷烟牌号分类识别方法。首先对采集的烟丝样本在线光谱数据进行预处理,并利用ResNeXt18网络模型对预处理后的光谱进行初次特征提取。然后... 为探究烟丝在线近红外光谱与卷烟牌号间的关系,提出了一种基于ResNeXt18-CNN-LightGBM混合模型的卷烟牌号分类识别方法。首先对采集的烟丝样本在线光谱数据进行预处理,并利用ResNeXt18网络模型对预处理后的光谱进行初次特征提取。然后将提取后的特征输入自定义的3层卷积神经(CNN)网络模型中,进行二次特征提取。最后将CNN提取的特征代入LightGBM分类器进行牌号分类训练。结果表明,ResNeXt18-CNN-LightGBM模型中烟丝牌号分类的准确率达97%。相较于传统的单个化学计量学算法,该文提出的基于卷积神经网络组合算法的卷烟牌号分类识别方法简单易行、准确性高、稳定性好,可应用于卷烟工业生产中卷烟牌号的在线识别,对卷烟品牌管理、生产质量评价及卷烟质量管控具有重要意义。 展开更多
关键词 在线近红外光谱 卷烟牌号 ResNeXt18 LightGBM 分类效果
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部