期刊文献+
共找到13,594篇文章
< 1 2 250 >
每页显示 20 50 100
船海学术语篇摘要中名词词组形式表征的认知分析——以“Classifier +Thing”为例
1
作者 田苗 张宇新 《山东外语教学》 北大核心 2025年第3期19-29,共11页
“Classifier+Thing”结构在船海学术语篇摘要中俯拾皆是,其认知路径和理据亟待深入探究。本研究聚焦“Classifier+Thing”名词词组,分析船海学术语篇摘要中该词组的认知路径及理据。研究发现:(1)“Classifier+Thing”在概念结构-语义... “Classifier+Thing”结构在船海学术语篇摘要中俯拾皆是,其认知路径和理据亟待深入探究。本研究聚焦“Classifier+Thing”名词词组,分析船海学术语篇摘要中该词组的认知路径及理据。研究发现:(1)“Classifier+Thing”在概念结构-语义层的认知过程体现了语法转喻机制,船海摘要语料库中主要通过“过程-动作”“过程-结果”“用途-结构”实现概念结构-语义间的动、静态转换;(2)“Classifier+Thing”的形式表征过程为先确定“核心词(Thing)”,后在大脑词库中匹配“类别语(Classifier)”,遵循认知经济性原则;(3)该词组形式表征过程受学术语篇类型影响,遵循受限语言说。研究结果一定程度上深化了对学术语篇中名词词组的认识,提升学界对于船海学科学术话语的关注。 展开更多
关键词 classifier+Thing” 认知路径及理据 学术摘要 名词词组
在线阅读 下载PDF
RFC-YOLOv8:可见光和红外图像自适应融合的目标检测
2
作者 官敬超 刘家辉 +2 位作者 赵庆辉 赖耀平 巢建树 《电光与控制》 北大核心 2025年第9期54-60,共7页
为解决在夜间、大雾和有遮挡等复杂环境中多目标检测精度显著降低的问题,提出了一种基于可见光-红外图像的双模态特征融合的目标检测算法——RFC-YOLOv8。该算法借鉴了YOLOv8的特征提取网络,采用并行结构,分别对可见光图像和红外图像进... 为解决在夜间、大雾和有遮挡等复杂环境中多目标检测精度显著降低的问题,提出了一种基于可见光-红外图像的双模态特征融合的目标检测算法——RFC-YOLOv8。该算法借鉴了YOLOv8的特征提取网络,采用并行结构,分别对可见光图像和红外图像进行多尺度特征提取。通过残差融合网络(RFN)自适应地融合可见光和红外图像特征。在Neck部分,融合了CBAM注意力模块,进一步加强了不同尺度融合特征的上下文联系。此外,添加了一个小目标检测头用以提升对小目标的检测能力。实验结果表明,RFC-YOLOv8算法在M3FD数据集上的mAP50高达87.7%,在FLIR数据集上的mAP50高达85.6%。相较现有5种先进的可见光-红外特征融合目标检测算法,该算法的mAP50在两个数据集上分别提升了4.8~6.1个百分点和1.9~6.4个百分点,显著提高了可见光和红外融合图像的检测性能。 展开更多
关键词 可见光图像 红外图像 自适应多模态特征融合 目标检测 rfc-YOLOv8
在线阅读 下载PDF
Drone-Based Public Surveillance Using 3D Point Clouds and Neuro-Fuzzy Classifier
3
作者 Yawar Abbas Aisha Ahmed Alarfaj +3 位作者 Ebtisam Abdullah Alabdulqader Asaad Algarni Ahmad Jalal Hui Liu 《Computers, Materials & Continua》 2025年第3期4759-4776,共18页
Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions f... Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions from such videos poses the following challenges:variations of human motion,the complexity of backdrops,motion blurs,occlusions,and restricted camera angles.This research presents a human activity recognition system to address these challenges by working with drones’red-green-blue(RGB)videos.The first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while reducing background interference before converting from RGB to grayscale images.The YOLO(You Only Look Once)algorithm detects and extracts humans from each frame,obtaining their skeletons for further processing.The joint angles,displacement and velocity,histogram of oriented gradients(HOG),3D points,and geodesic Distance are included.These features are optimized using Quadratic Discriminant Analysis(QDA)and utilized in a Neuro-Fuzzy Classifier(NFC)for activity classification.Real-world evaluations on the Drone-Action,Unmanned Aerial Vehicle(UAV)-Gesture,and Okutama-Action datasets substantiate the proposed system’s superiority in accuracy rates over existing methods.In particular,the system obtains recognition rates of 93%for drone action,97%for UAV gestures,and 81%for Okutama-action,demonstrating the system’s reliability and ability to learn human activity from drone videos. 展开更多
关键词 Activity recognition geodesic distance pattern recognition neuro fuzzy classifier
在线阅读 下载PDF
A dual-approach to genomic predictions:leveraging convolutional networks and voting classifiers
4
作者 Raghad K.Mohammed Azmi Tawfeq Hussein Alrawi Ali Jbaeer Dawood 《Biomedical Engineering Communications》 2025年第1期3-11,共9页
Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the ident... Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the identification of risk factors associated with genetic disorders.Methods:Our study introduces a novel two-tiered analytical framework to raise the precision and reliability of genetic data interpretation.It is initiated by extracting and analyzing salient features from DNA sequences through a CNN-based feature analysis,taking advantage of the power inherent in Convolutional neural networks(CNNs)to attain complex patterns and minute mutations in genetic data.This study embraces an elite collection of machine learning classifiers interweaved through a stern voting mechanism,which synergistically joins the predictions made from multiple classifiers to generate comprehensive and well-balanced interpretations of the genetic data.Results:This state-of-the-art method was further tested by carrying out an empirical analysis on a variants'dataset of DNA sequences taken from patients affected by breast cancer,juxtaposed with a control group composed of healthy people.Thus,the integration of CNNs with a voting-based ensemble of classifiers returned outstanding outcomes,with performance metrics accuracy,precision,recall,and F1-scorereaching the outstanding rate of 0.88,outperforming previous models.Conclusions:This dual accomplishment underlines the transformative potential that integrating deep learning techniques with ensemble machine learning might provide in real added value for further genetic diagnostics and prognostics.These results from this study set a new benchmark in the accuracy of disease diagnosis through DNA sequencing and promise future studies on improved personalized medicine and healthcare approaches with precise genetic information. 展开更多
关键词 CNN DNA sequencing ensemble machine learning genetic disease voting classifier
在线阅读 下载PDF
细胞周期相关基因的胶质母细胞瘤预后模型构建及RFC2的细胞增殖效应研究
5
作者 王二静 吴伟 +4 位作者 周浩宇 王乙錩 项健阳 王佳 王茂德 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2024年第5期748-756,共9页
目的研究复制因子C亚基2(RFC2)与胶质母细胞瘤(GBM)患者预后和肿瘤细胞增殖之间的关系,并探索其在GBM发展中的潜在分子通路。方法利用生物信息学方法,筛选出可作为GBM独立预后因素的细胞周期基因,结合临床指标,构建GBM患者风险评分模型... 目的研究复制因子C亚基2(RFC2)与胶质母细胞瘤(GBM)患者预后和肿瘤细胞增殖之间的关系,并探索其在GBM发展中的潜在分子通路。方法利用生物信息学方法,筛选出可作为GBM独立预后因素的细胞周期基因,结合临床指标,构建GBM患者风险评分模型并验证其预测能力,对目标基因RFC2进行GO、KEGG和GSEA分析。取对数生长期的U87 GBM细胞进行慢病毒转染后分组(空白对照组、shRFC2#1、shRFC2#2),通过qRT-PCR、Western blotting、Edu染色、克隆形成实验检测mRNA表达、蛋白表达和细胞增殖。结果RFC2在GBM中表达上调,并随着胶质瘤病理级别升高,呈明显上升趋势。基因功能与通路分析结果提示,RFC2在姐妹染色体分离、染色体分离、细胞器裂变、核分裂、核有丝分裂等进程中,促进细胞周期过程中G1向S期转变。qRT-PCR和Western blotting结果显示,相较空白对照组,慢病毒敲低组中转录mRNA减少(P<0.0001)、翻译蛋白量减少;同样,与空白对照组相比,慢病毒敲低组Edu染色阳性率降低(P<0.0001),集落形成能力相应降低(P<0.001)。结论RFC2在GBM中高表达,且与胶质瘤分级和患者不良预后相关,促进GBM细胞增殖;RFC2有可能成为GBM潜在的生物标志物和治疗靶标。 展开更多
关键词 胶质母细胞瘤(GBM) 复制因子C亚基2(rfc2) 预后 增殖
暂未订购
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
6
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
在线阅读 下载PDF
RefluxClassifier分离细颗粒的技术发展与应用前景 被引量:1
7
作者 马梦绮 张志远 +2 位作者 荆隆隆 方佳豪 李延锋 《有色金属(选矿部分)》 CAS 2024年第1期106-115,共10页
矿石综采技术带来诸多便利的同时,也导致了矿石中细颗粒比例增多。细颗粒分离成为了国内外矿物加工领域面临的难题。由于细颗粒质量小、比表面积大、表面能高、容易团聚,进而难以有效分离。本世纪初,由澳大利亚学者Galvin所研制的Reflux... 矿石综采技术带来诸多便利的同时,也导致了矿石中细颗粒比例增多。细颗粒分离成为了国内外矿物加工领域面临的难题。由于细颗粒质量小、比表面积大、表面能高、容易团聚,进而难以有效分离。本世纪初,由澳大利亚学者Galvin所研制的RefluxClassifier(回流分级机,简称RC)作为一种新型重力分选设备进入到矿物加工设备行列。该设备由液固流化床与倾斜通道组成,分为垂直段与倾斜段,具有操作简单、成本低廉和高效节能等优点。据研究,RC因其特殊的结构与工作机理可以有效解决细颗粒分离问题。本文首先归纳了国内外有关RC的理论研究,详细描述了RC倾斜段中颗粒在流体中的运动状态,阐明了倾斜通道内颗粒运动与流体流动特性之间的关系,简要分析了颗粒性质与流体之间的力与速度关系。此外,本文对目前现有RC的水速预测模型(经典动力学模型、经验模型、弱化粒度模型、平衡模型)进行了总结,并综合分析了各模型的适用范围。结合试验案例,介绍了RC在煤炭、黑金属、砂石骨料等领域的应用现状,举例分析不同试验条件下RC对细颗粒回收的分离情况。最后结合我国资源现状与现代设备发展趋势,提出如何深入优化RC分选理论模型、拓展更广阔的应用领域是国内外学者的长期研究目标,并展望RC在工业范围内的全面推广。 展开更多
关键词 Refluxclassifier 细粒回收 重力分选 颗粒运动
在线阅读 下载PDF
基于RFC-SAGA-RBF的直流偏磁下CT畸变电流反衍方法 被引量:1
8
作者 王波 尹仕红 +4 位作者 肖勇 胡珊珊 范小飞 潘深琛 王保帅 《南方电网技术》 CSCD 北大核心 2024年第12期51-61,共11页
线路中的直流偏磁电流易引起计量用电流互感器(current transformer,CT)饱和,CT在饱和状态下输出的二次侧电流含有的谐波分量将导致电能计量误差增大。为了提高直流偏磁下电流互感器测量的准确性,提出了CT畸变电流的反衍方法。该方法将... 线路中的直流偏磁电流易引起计量用电流互感器(current transformer,CT)饱和,CT在饱和状态下输出的二次侧电流含有的谐波分量将导致电能计量误差增大。为了提高直流偏磁下电流互感器测量的准确性,提出了CT畸变电流的反衍方法。该方法将直流偏磁下CT畸变电流反衍过程分为离网和在网两个阶段。离网阶段,首先通过改变CT的运行环境生成数据样本集,然后利用随机森林分类(random forest classification,RFC)算法对CT的饱和程度进行分类,最后针对每一子类分别训练,经模拟退火遗传算法优化的径向基神经网络(simulate anneal genetic algorithm-radial basis function,SAGA-RBF)模型对饱和电流进行反衍;在网阶段,通过小波变换对二次侧电流波形进行饱和数据段提取,再将饱和数据段输入离线模型实现二次侧畸变电流反衍一次侧电流。仿真结果表明,所提方法在各种工况下均能对CT一次侧电流进行反衍,并提高CT的计量准确度。 展开更多
关键词 电磁式电流互感器 直流偏磁 饱和电流重构 小波变换 随机森林分类算法
在线阅读 下载PDF
RFC2 may contribute to the pathogenicity of Williams syndrome revealed in a zebrafish model
9
作者 Ji-Won Park Tae-Ik Choi +13 位作者 Tae-Yoon Kim Yu-Ri Lee Dilan Wellalage Don Jaya K.George-Abraham Laurie A.Robak Cristina C.Trandafir Pengfei Liu Jill A.Rosenfeld Tae Hyeong Kim Florence Petit Yoo-Mi Kim Chong Kun Cheon Yoonsung Lee Cheol-Hee Kim 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2024年第12期1389-1403,共15页
Williams syndrome(WS)is a rare multisystemic disorder caused by recurrent microdeletions on 7q11.23,characterized by intellectual disability,distinctive craniofacial and dental features,and cardiovascular problems.Pre... Williams syndrome(WS)is a rare multisystemic disorder caused by recurrent microdeletions on 7q11.23,characterized by intellectual disability,distinctive craniofacial and dental features,and cardiovascular problems.Previous studies have explored the roles of individual genes within these microdeletions in contributing to WS phenotypes.Here,we report five patients with WS with 1.4 Mb-1.5 Mb microdeletions that include RFC2,as well as one patient with a 167-kb microdeletion involving RFC2 and six patients with intragenic variants within RFC2.To investigate the potential involvement of RFC2 in WS pathogenicity,we generate a rfc2 knockout(KO)zebrafish using CRISPR-Cas9 technology.Additionally,we generate a KO zebrafish of its paralog gene,rfc5,to better understand the functions of these RFC genes in development and disease.Both rfc2 and rfc5 KO zebrafish exhibit similar phenotypes reminiscent of WS,including small head and brain,jaw and dental defects,and vascular problems.RNA-seq analysis reveals that genes associated with neural cell survival and differentiation are specifically affected in rfc2 KO zebrafish.In addition,heterozygous rfc2 KO adult zebrafish demonstrate an anxiety-like behavior with increased social cohesion.These results suggest that RFC2 may contribute to the pathogenicity of WS,as evidenced by the zebrafish model. 展开更多
关键词 Williams syndrome rfc2 rfc5 ZEBRAFISH KNOCKOUT CRISPR-Cas9
原文传递
基于Extra Tree Classifier的水质安全建模预测
10
作者 杨丽佳 陈新房 +1 位作者 赵晗清 汪世伟 《电脑与电信》 2024年第6期57-61,共5页
随着工业化和城市化的快速发展,水质安全问题日益受到关注。本研究利用一个包含7999条数据记录的水质分析数据集,涵盖多种化学物质浓度测量值与安全阈值,以及“是否安全”分类变量,运用Extr aTree Classifier模型进行水质安全建模预测... 随着工业化和城市化的快速发展,水质安全问题日益受到关注。本研究利用一个包含7999条数据记录的水质分析数据集,涵盖多种化学物质浓度测量值与安全阈值,以及“是否安全”分类变量,运用Extr aTree Classifier模型进行水质安全建模预测及数据分析。本研究目的在于提供一个可靠的模型,以帮助决策者和相关部门更好地监测和维护水质安全,从而保障公众健康和环境可持续发展。 展开更多
关键词 水质安全 Lazy Predict Extra Tree classifier k折交叉验证 机器学习
在线阅读 下载PDF
Using Cross Entropy as a Performance Metric for Quantifying Uncertainty in DNN Image Classifiers: An Application to Classification of Lung Cancer on CT Images
11
作者 Eri Matsuyama Masayuki Nishiki +1 位作者 Noriyuki Takahashi Haruyuki Watanabe 《Journal of Biomedical Science and Engineering》 2024年第1期1-12,共12页
Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation... Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. . 展开更多
关键词 Cross Entropy Performance Metrics DNN Image classifiers Lung Cancer Prediction Uncertainty
在线阅读 下载PDF
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
12
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
在线阅读 下载PDF
基于RFC优化算法的报文数据快速模式匹配
13
作者 王瑞钦 谭皇 《现代计算机》 2024年第20期57-62,共6页
为提高报文数据模式匹配速度,对RFC算法进行优化。该优化算法通过选择优良的哈希算法对规则CBM比特位图进行去重匹配,从而降低预处理过程的时间复杂度;在“缩减”的最后阶段,将等价类规则CBM比特位图改为索引数组,使得数据平面的报文数... 为提高报文数据模式匹配速度,对RFC算法进行优化。该优化算法通过选择优良的哈希算法对规则CBM比特位图进行去重匹配,从而降低预处理过程的时间复杂度;在“缩减”的最后阶段,将等价类规则CBM比特位图改为索引数组,使得数据平面的报文数据匹配查找时间复杂度由Ф(n^(2))降低到Ф(1),进一步减少了对空间资源的消耗。实验结果表明,该RFC优化算法有效降低了时间和空间复杂度,达到100 Gbps的处理性能水平,可以应用到各种流量攻击防护场景。 展开更多
关键词 rfc算法 CBM位图 哈希去重 索引数组 模式匹配
在线阅读 下载PDF
An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features
14
作者 Saad M.Darwish Abdul Rahman M.Sabri +1 位作者 Dhafar Hamed Abd Adel A.Elzoghabi 《Computer Systems Science & Engineering》 2024年第6期1595-1624,共30页
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient... The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%. 展开更多
关键词 Political articles orientation detection CatBoost classifier multi-level features context-based classification social networks machine learning stylometric features
在线阅读 下载PDF
Mammogram Classification with HanmanNets Using Hanman Transform Classifier
15
作者 Jyoti Dabass Madasu Hanmandlu +1 位作者 Rekha Vig Shantaram Vasikarla 《Journal of Modern Physics》 2024年第7期1045-1067,共23页
Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep infor... Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep information set features from ResNet by modifying its kernel functions to yield Type-1 HanmanNets and then AlexNet, GoogLeNet and VGG-16 by changing their feature maps to yield Type-2 HanmanNets. The two types of HanmanNets exploit the final feature maps of these architectures in the generation of deep information set features from mammograms for their classification using the Hanman Transform Classifier. In this work, the characteristics of the abnormality present in the mammograms are captured using the above network architectures that help derive the features of HanmanNets based on information set concept and their performance is compared via the classification accuracies. The highest accuracy of 100% is achieved for the multi-class classifications on the mini-MIAS database thus surpassing the results in the literature. Validation of the results is done by the expert radiologists to show their clinical relevance. 展开更多
关键词 MAMMOGRAMS ResNet 18 Hanman Transform classifier ABNORMALITY DIAGNOSIS VGG-16 AlexNet GoogleNet HanmanNets
在线阅读 下载PDF
互联网核心技术的中国贡献 RFC数量及占比分析
16
作者 陈茜 《中国教育网络》 2024年第9期18-23,共6页
1994年4月20日,通过美国Sprint公司的64K专线,中国全功能接入了国际互联网,同年,我国第一个覆盖全国的互联网主干网CERNET开始建设。1996年3月,在世界上第一篇RFC出现27年后,清华大学提交的《互联网消息的汉字编码》(Chinese Character ... 1994年4月20日,通过美国Sprint公司的64K专线,中国全功能接入了国际互联网,同年,我国第一个覆盖全国的互联网主干网CERNET开始建设。1996年3月,在世界上第一篇RFC出现27年后,清华大学提交的《互联网消息的汉字编码》(Chinese Character Encoding for Internet Messages)被IETF作为RFC1922发布,成为中国内地第一篇RFC文件,这也是我国第一篇信息类RFC。 展开更多
关键词 国际互联网 汉字编码 主干网 IETF rfc Internet 全功能 核心技术
在线阅读 下载PDF
全球RFC发展脉络 记录和见证互联网的演进历程
17
作者 陈茜 《中国教育网络》 2024年第9期25-28,共4页
从最早的试探性的对话,到今天结构化的正式文档,55年以来,来自世界各地的研究人员所发表的九千余篇RFC致力于解决计算机网络的设计、概念和应用问题。可以说,RFC记录和见证了互联网的发展历程。
关键词 计算机网络 互联网 演进历程 rfc 结构化 发展历程 发展脉络 文档
在线阅读 下载PDF
Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection
18
作者 Islam Zada Mohammed Naif Alatawi +4 位作者 Syed Muhammad Saqlain Abdullah Alshahrani Adel Alshamran Kanwal Imran Hessa Alfraihi 《Computers, Materials & Continua》 SCIE EI 2024年第8期2917-2939,共23页
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malwar... Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats. 展开更多
关键词 Security and privacy challenges in the context of requirements engineering supervisedmachine learning malware detection windows systems comparative analysis Gaussian Naive Bayes K Nearest Neighbors Stochastic Gradient Descent classifier Decision Tree
在线阅读 下载PDF
第一篇RFC诞生背后的故事
19
作者 陈茜 《中国教育网络》 2024年第9期29-30,共2页
收到RFC1的人觉得自己参与到了一种有趣的流程中——他们讨论的是一个网络,因此有必要让所有人参与进来。搭建ARPANET的任务从互联网的诞生,到不断发展壮大过程中,出现过无数的思考和探讨。从最初的NCP协议,到现代互联网基石TCP/IP协议... 收到RFC1的人觉得自己参与到了一种有趣的流程中——他们讨论的是一个网络,因此有必要让所有人参与进来。搭建ARPANET的任务从互联网的诞生,到不断发展壮大过程中,出现过无数的思考和探讨。从最初的NCP协议,到现代互联网基石TCP/IP协议,无一不是研究人员智慧的结晶。这些闪耀着人类智慧光芒的思想成果,大都是以被称为RFC的文档形式记录下来的。那么,作为“互联网知识圣经”的RFC是如何产生的? 展开更多
关键词 TCP/IP协议 rfc 互联网知识 智慧光芒 文档形式 现代互联网 思考和探讨
在线阅读 下载PDF
基于卷积神经网络组合算法的卷烟牌号在线分类识别研究 被引量:1
20
作者 李石头 廖付 +8 位作者 吴继忠 张军 徐梦瑶 丁伟 李永生 李淑彪 何文苗 王辉 毕一鸣 《分析测试学报》 北大核心 2025年第3期514-520,共7页
为探究烟丝在线近红外光谱与卷烟牌号间的关系,提出了一种基于ResNeXt18-CNN-LightGBM混合模型的卷烟牌号分类识别方法。首先对采集的烟丝样本在线光谱数据进行预处理,并利用ResNeXt18网络模型对预处理后的光谱进行初次特征提取。然后... 为探究烟丝在线近红外光谱与卷烟牌号间的关系,提出了一种基于ResNeXt18-CNN-LightGBM混合模型的卷烟牌号分类识别方法。首先对采集的烟丝样本在线光谱数据进行预处理,并利用ResNeXt18网络模型对预处理后的光谱进行初次特征提取。然后将提取后的特征输入自定义的3层卷积神经(CNN)网络模型中,进行二次特征提取。最后将CNN提取的特征代入LightGBM分类器进行牌号分类训练。结果表明,ResNeXt18-CNN-LightGBM模型中烟丝牌号分类的准确率达97%。相较于传统的单个化学计量学算法,该文提出的基于卷积神经网络组合算法的卷烟牌号分类识别方法简单易行、准确性高、稳定性好,可应用于卷烟工业生产中卷烟牌号的在线识别,对卷烟品牌管理、生产质量评价及卷烟质量管控具有重要意义。 展开更多
关键词 在线近红外光谱 卷烟牌号 ResNeXt18 LightGBM 分类效果
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部