期刊文献+
共找到379篇文章
< 1 2 19 >
每页显示 20 50 100
Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction
1
作者 Xuhui Fan Fan Wang +7 位作者 Mengjiao Li Faiza Meharban Yaying Li Yuanyuan Cui Xiaopeng Li Jingsan Xu Qi Xiao Wei Luo 《Chinese Chemical Letters》 2025年第1期362-368,共7页
In this work,we developed plasmonic photocatalyst composed of Cu Pd alloy nanoparticles supported on Ti N,the optimized Cu_(3)Pd_(2)/Ti N catalyst shows excellent conversion(>96%)and selectivity(>99%)for Heck re... In this work,we developed plasmonic photocatalyst composed of Cu Pd alloy nanoparticles supported on Ti N,the optimized Cu_(3)Pd_(2)/Ti N catalyst shows excellent conversion(>96%)and selectivity(>99%)for Heck reaction at 50℃ under visible light irradiation.By in-situ spectroscopic investigations,we find that visible light excitation could achieve stable metallic Cu species on the surface of Cu Pd alloy nanoparticles,thereby eliminating the inevitable surface oxides of Cu based catalyst.The in-situ formed metallic Cu species under irradiation take advantage of the strong interactions of Cu with visible light,and manifest in the localized surface plasmon resonances(LSPR)photoexcitation.Visible light excitation could further promote the charge transfer between catalytic Pd component and the support Ti N,resulting in electron-rich Pd sites on Cu Pd/Ti N.Moreover,light excitation on Cu Pd/Ti N generates strong chemisorption of iodobenzene and styrene,favoring the activation of reactants for Heck reaction.DFT calculations suggest that electron-rich Cu Pd sites ideally lower the activation energy barrier for the coupling reaction.This work provides valuable insights for mechanistic understanding of plasmonic photocatalysis. 展开更多
关键词 PHOTOCATALYSIS CuPd alloy chemisorption Photocatalytic mechanism LSPR
原文传递
Achieving Wide‑Temperature‑Range Physical and Chemical Hydrogen Sorption in a Structural Optimized Mg/N‑Doped Porous Carbon Nanocomposite
2
作者 Yinghui Li Li Ren +5 位作者 Zi Li Yingying Yao Xi Lin Wenjiang Ding Andrea C.Ferrari Jianxin Zou 《Nano-Micro Letters》 2026年第3期479-498,共20页
Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics,kinetics,and cycling stability of hydrogen storage materials.The introduction of supporting scaffolds usually causes a reduction in ... Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics,kinetics,and cycling stability of hydrogen storage materials.The introduction of supporting scaffolds usually causes a reduction in the total hydrogen storage capacity due to“dead weight.”Here,we synthesize an optimized N-doped porous carbon(rN-pC)without heavy metal as supporting scaffold to confine Mg/MgH_(2) nanoparticles(Mg/MgH_(2)@rN-pC).rN-pC with 60 wt%loading capacity of Mg(denoted as 60 Mg@rN-pC)can adsorb and desorb 0.62 wt%H_(2) on the rN-pC scaffold.The nanoconfined MgH_(2) can be chemically dehydrided at 175℃,providing~3.59 wt%H_(2) with fast kinetics(fully dehydrogenated at 300℃ within 15 min).This study presents the first realization of nanoconfined Mg-based system with adsorption-active scaffolds.Besides,the nanoconfined MgH_(2) formation enthalpy is reduced to~68 kJ mol^(−1) H_(2) from~75 kJ mol^(−1) H_(2) for pure MgH_(2).The composite can be also compressed to nanostructured pellets,with volumetric H_(2) density reaching 33.4 g L^(−1) after 500 MPa compression pressure,which surpasses the 24 g L^(−1) volumetric capacity of 350 bar compressed H_(2).Our approach can be implemented to the design of hybrid H_(2) storage materials with enhanced capacity and desorption rate. 展开更多
关键词 Hydrogen storage MgH_(2) Porous carbon NANOCONFINEMENT Physi-and chemisorption
在线阅读 下载PDF
Enabling Multi-Chemisorption Sites on Carbon Nanofibers Cathodes by an In-situ Exfoliation Strategy for High-Performance Zn–Ion Hybrid Capacitors 被引量:7
3
作者 Hongcheng He Jichun Lian +3 位作者 Changmiao Chen Qiaotian Xiong Cheng Chao Li Ming Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期1-15,共15页
Carbon nanofibers films are typical flexible electrode in the field of energy storage,but their application in Zinc-ion hybrid capacitors(ZIHCs)is limited by the low energy density due to the lack of active adsorption... Carbon nanofibers films are typical flexible electrode in the field of energy storage,but their application in Zinc-ion hybrid capacitors(ZIHCs)is limited by the low energy density due to the lack of active adsorption sites.In this work,an in-situ exfoliation strategy is reported to modulate the chemisorption sites of carbon nanofibers by high pyridine/pyrrole nitrogen doping and carbonyl functionalization.The experimental results and theoretical calculations indicate that the highly electronegative pyridine/pyrrole nitrogen dopants can not only greatly reduce the binding energy between carbonyl group and Z n2+by inducing charge delocalization of the carbonyl group,but also promote the adsorption of Zn2+by bonding with the carbonyl group to form N–Zn–O bond.Benefit from the multiple highly active chemisorption sites generated by the synergy between carbonyl groups and pyridine/pyrrole nitrogen atoms,the resulting carbon nanofibers film cathode displays a high energy density,an ultralong-term lifespan,and excellent capacity reservation under commercial mass loading(14.45 mg cm-2).Particularly,the cathodes can also operate stably in flexible or quasi-solid devices,indicating its application potential in flexible electronic products.This work established a universal method to solve the bottleneck problem of insufficient active adsorption sites of carbon-based ZIHCs.Imoproved should be changed into Improved. 展开更多
关键词 Nitrogen doping Carbonyl functionalization chemisorption sites Flexible Zn-ion hybrid capacitors
在线阅读 下载PDF
Study on Chemisorption and Desorption of Hydrogen and Nitrogen on Ru-based Ammonia Synthesis Catalyst 被引量:4
4
作者 祝一锋 李小年 +2 位作者 周春晖 高冬梅 刘化章 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第1期15-18,共4页
The effects of promoters K, Ba, Sm on the chemisorption and desorption of hydrogen and nitrogen, dispersion of metallic Ru. and catalytic activity of active carbon (AC) supported ruthenium catalyst for ammonia synthes... The effects of promoters K, Ba, Sm on the chemisorption and desorption of hydrogen and nitrogen, dispersion of metallic Ru. and catalytic activity of active carbon (AC) supported ruthenium catalyst for ammonia synthesis have been studied by means of pulse chromatography, temperature-programmed desorption, and activity test. Promoters K, Ba and Sm increased the activity of Ru/AC catalysts for ammonia synthesis significantly, and particularly, potassium exhibited the best promotion on the activity because of the strong electronic donation to metallic Ru. Much higher activity can be obtained for Ru/AC catalyst with binary or triple promoters. The activity of Ru/AC catalyst is dependent on the adsorption of hydrogen and nitrogen. The high activity of catalyst could be ascribed to strong dissociation of nitrogen on the catalyst surface. Strong adsorption of hydrogen would inhibit the adsorption of nitrogen, resulted in decrease of the catalytic activity. Ru/AC catalyst promoted by Sm2O3 shows the best dispersion of metallic Ru, since the partly reduced SmOx on the surface modifies the morphology of active sites and favors the dispersion of metallic Ru. The activity of Ru/AC catalysts is in accordance to the corresponding amount of nitrogen chemisorption and the desorption activation energy of nitrogen. The desorption activation energy for nitrogen decreases in the order of Ru>Ru-Ba>Ru-Sm>Ru-Ba-Sm>Ru-K>Ru-K-Sm>Ru-K-Ba>Ru-K-Ba-Sm, just opposite to the order of catalytic activity, suggesting that the ammonia synthesis over Ru-based catalyst is controlled by the step of dissociation of nitrogen. 展开更多
关键词 RUTHENIUM CATALYST ammonia synthesis chemisorption DESORPTION
在线阅读 下载PDF
Research of the behaviour of O chemisorption on the (110) surface of Rhx-Pt1-x alloy 被引量:2
5
作者 张辉 张国英 +1 位作者 王瑞丹 钟博 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第3期641-644,共4页
An atomic group model of the disordered binary alloy Rhx-Pt1-x has been constructed to investigate surface segregation. According to the model, we have calculated the electronic structure of the Rhx-Pt1-x alloy surfac... An atomic group model of the disordered binary alloy Rhx-Pt1-x has been constructed to investigate surface segregation. According to the model, we have calculated the electronic structure of the Rhx-Pt1-x alloy surface by using the recursion method when O atoms are adsorbed on the Rhx-Pt1-x (110) surface under the condition of coverage 0.5. The calculation results indicate that the chemical adsorption of O changes greatly the density of states near the Fermi level, and the surface segregation exhibits a reversal behaviour. In addition, when x 〈 0.3, the surface on which O is adsorbed displays the property of Pt; whereas when x 〉 0.3 it displays the property of Rh. 展开更多
关键词 chemisorption surface segregation recursion method density of states
原文传递
Decorating ketjen black with ultra-small Mo_(2)C nanoparticles to enhance polysulfides chemisorption and redox kinetics for lithium-sulfur batteries 被引量:2
6
作者 Nan Jiang Guangyu Jiang +4 位作者 Dechao Niu Jiayi Mao Meiwan Chen Kaiyuan Li Yongsheng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期207-215,共9页
The low sulfur utilization and fast capacity fading resulting from the sluggish redox reaction and abominable polysulfides shuttle greatly hinder the practical applications of lithium-sulfur(Li-S) batteries.Herein, we... The low sulfur utilization and fast capacity fading resulting from the sluggish redox reaction and abominable polysulfides shuttle greatly hinder the practical applications of lithium-sulfur(Li-S) batteries.Herein, we develop a facile "in-situ growth" method to decorate ultra-small Mo2 C nanoparticles(USMo2 C) on the surface of Ketjen Black(KB) to functionalize the commercial polypropylene(PP) separators,which can accelerate the redox kinetics of lithium polysulfides conversion and effectively increase the utilization of sulfur for Li-S batteries. Importantly, the US-Mo2 C nanoparticles have abundant sites for chemical adsorption towards polysulfides and the conductive carbon networks of KB have cross-linked pore channels, which can promote electron transport and provide physical barrier and volume expansion space for polysulfides. Due to the combined effects of the US-Mo2 C and KB, Li-S cells employing the multifunctional PP separators modified with KB/US-Mo2 C composite(KB/US-Mo2 C@PP) exhibit a high specific capacity(1212.8 mAh g^(-1) at 0.2 C), and maintain a reversible capacity of 1053.3 m Ah g^(-1) after 100 cycles.More importantly, the KB/US-Mo2 C@PP cells with higher sulfur mass loading of 4.9 mg cm^(-2) have superb areal capacity of 2.3 mAh cm^(-2). This work offers a novel and promising perspective for high-performance Li-S batteries from both the shuttle effect and the complex polysulfides conversion. 展开更多
关键词 in-situ growth Ultra-small Mo_(2)C Catalytic effect chemisorption Multifunctional separator Lithium-sulfur batteries
在线阅读 下载PDF
Tuning the reversible chemisorption of hydroxyl ions to promote the electrocatalysis on ultrathin metal-organic framework nanosheets 被引量:1
7
作者 Hong Yu Yao Jing +1 位作者 Cheng-Feng Du Jiong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期71-77,共7页
Interfacial engineering to alter the configuration of active sites in heterogeneous catalysts is a potential strategy for activity enhancement,but it remains unelucidated for metal-organic frameworks(MOFs).Here,we dem... Interfacial engineering to alter the configuration of active sites in heterogeneous catalysts is a potential strategy for activity enhancement,but it remains unelucidated for metal-organic frameworks(MOFs).Here,we demonstrate that the surface of two-dimensional Co-based MOF is modified by decorating Ag quantum dots(QDs)simply through in-situ reduction of Ag+ions.Toward oxygen evolution reaction(OER),it reveals that the catalysis is mediated by the reversible redox of Co sites between Co^(3+) and Co^(4+) states coupling with transfer of OHions.The decoration of Ag QDs decreases the redox potential of Co sites,and thus effectively decreases the overpotential of OER.The TOFs of Co sites are increased by 77 times to reach 5.4 s^(-1) at an overpotential of 0.35 V.We attribute the activity enhancement to the tuning of the coupling process between Co sites and OHions during the redox of Co sites by Ag QDs decoration based on Pourbaix analysis. 展开更多
关键词 2D metal-organic frameworks Interfacial engineering Pourbaix analysis chemisorption of hydroxyl ions Oxygen evolution reaction
在线阅读 下载PDF
O2, CO2, and H2O Chemisorption on UN(001) Surface: Density Functional Theory Study
8
作者 李如松 何彬 +2 位作者 王飞 许鹏 王华 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第1期20-28,I0003,共10页
We performed density functional theory calculations of O2, CO2, and H2O chemisorption on the UN(001) surface using the generalized gradient approximation and PW91 exchangecorrelation functional at non-spin polarized... We performed density functional theory calculations of O2, CO2, and H2O chemisorption on the UN(001) surface using the generalized gradient approximation and PW91 exchangecorrelation functional at non-spin polarized level with the periodic slab model. Chemisorption energies vs. molecular distance from UN(001) surface were optimized for four symmetrical chemisorption sites. The results showed that the bridge parallel, hollow parallel and bridge hydrogen-up adsorption sites were the most stable site for O2, CO2, and H2O molecular with chemisorption energies of 14.48, 4.492, and 5.85 kJ/mol, respectively. From the point of adsorbent (the UN(001) surface), interaction of O2 with the UN(001) surface was of the maximum magnitude, then CO2 and H2O, indicating that these interactions were associated with structures of the adsorbate. O2 chemisorption caused N atoms on the surface to migrate into the bulk, however CO2 and H2O had a moderate and negligible effect on the surface, respectively. Calculated electronic density of states demonstrated the electronic charge transfer between s, p orbital in chemisorption molecular and U6d, U5f orbital. 展开更多
关键词 chemisorption Density functional theory Geometric relaxation Electronic density of state
在线阅读 下载PDF
A Density Functional Theory Study of Methoxy and Atomic Hydrogen Chemisorption on Au(100) Surface 被引量:2
9
作者 M. N’dollo P. S. Moussounda +1 位作者 T. Dintzer F. Garin 《Journal of Modern Physics》 2013年第3期409-417,共9页
The adsorption of CH3O and H on the (100) facet of gold was studied using self-consistent periodic density functional theory (DFT-GGA) calculations. The best binding site, energy, and structural parameter, as well as ... The adsorption of CH3O and H on the (100) facet of gold was studied using self-consistent periodic density functional theory (DFT-GGA) calculations. The best binding site, energy, and structural parameter, as well as the local density of states, of each species were determined. CH3O is predicted to strongly adsorb on the bridge and hollow sites, with the bridge site as preferred one, with one of the hydrogen atoms pointing toward a fourfold vacancy (bridge-H hollow). The top site was found to be unstable, the CH3O radical moving to the bridge –H top site during geometry optimization. Adsorption of H is unstable on the hollow site, the atom moving to the bridge site during geometry optimization. The 4-layer slab is predicted to be endothermic with respect to gaseous H2 and a clean Au surface. 展开更多
关键词 chemisorption Density FUNCTIONAL CALCULATIONS GOLD METHOXY Hydrogen
在线阅读 下载PDF
Effects of Vibrational and Rotational Excitations on Dissociative Chemisorption Dynamics of N_(2) on Fe(111)
10
作者 Huixia Shi Tianhui Liu +3 位作者 YanlinFu Hao Wu Bina Fu Dong HZhang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第3期443-450,I0001,I0002,共10页
The dissociative chemisorption of N_(2) is the rate-limiting step for ammonia synthesis in industry.Here,we investigated the role of initially vibrational excitation and ro-tational excitation of N_(2) for its reactiv... The dissociative chemisorption of N_(2) is the rate-limiting step for ammonia synthesis in industry.Here,we investigated the role of initially vibrational excitation and ro-tational excitation of N_(2) for its reactivity on the Fe(111)surface,based on a recently developed six-dimensional potential energy surface.Six-dimensional quantum dynamics study was carried out to investi-gate the effect of vibrational excitation for incidence energy below 1.6 eV,due to sig-nificant quantum effects for this reaction.The effects of vibrational and rotational excitations at high incidence energies were revealed by quasiclassical trajectory calculations.We found that raising the translational energy can enhance the dissociation probability to some extent,however,the vibrational excitation or rotational excitation can promote disso-ciation more efficiently than the same amount of translational energy.This study provides valuable insight into the mode-specific dynamics of this heavy diatom-surface reaction. 展开更多
关键词 Quantum dynamics Quasiclassical trajectory Dissociative chemisorption Vi-brational excitation Rotational excitation
在线阅读 下载PDF
Chemisorption and Physical Adsorption Roles in Cadmium Biosorption by Chlamydomonas Reinhardtii
11
作者 Jiang Yongbin Huo Xiangyuan +1 位作者 Zhu Yi Ji Hongbing 《Chinese Journal of Population,Resources and Environment》 2010年第3期54-58,共5页
The aim of this study was to investigate the mechanism of cadmium (Cd) adsorbed by microalgae Chlamydomonas reinhardtii (C.reinhardtii). The kinetic and adsorption isotherm of the process could be well described by ma... The aim of this study was to investigate the mechanism of cadmium (Cd) adsorbed by microalgae Chlamydomonas reinhardtii (C.reinhardtii). The kinetic and adsorption isotherm of the process could be well described by mathematical models. Chemical modification experiments and Fourier transform infrared spectra indicated that carboxyl and amine groups were the important functional groups for adsorption of Cd. The maximum contribution of physical adsorption in the overall adsorption process was evaluated as 5.5%. These results indicated that chemisorption was the dominating mechanism of Cd biosorption by C.reinhardtii. 展开更多
关键词 C.reinhardtii BIOSORPTION chemisorption physical adsorption
在线阅读 下载PDF
THEORETICAL STUDY OF MOLYBDENUM CHEMISORPTION ON Si(111) AND Si(100 ) SURFACES
12
作者 TANG Shaoping ZHANG Kaiming XIE Xide 《Chinese Physics Letters》 SCIE CAS 1988年第1期29-32,共4页
The chemisorptions of Mo on both Si(111)and Si(100)surfaces are inves tiga ted by the DV-Xct-SCF met hod.The resul ts show that after overcoming a certain energy barrier the adsorbate Mo can penetrate the surface to f... The chemisorptions of Mo on both Si(111)and Si(100)surfaces are inves tiga ted by the DV-Xct-SCF met hod.The resul ts show that after overcoming a certain energy barrier the adsorbate Mo can penetrate the surface to form adamantine structure.The electronic states of chemisorption are calculated and compared with experimental results. 展开更多
关键词 structure SI(111) chemisorption
原文传递
A MOLECULAR BEAM INVESTIGATION ON ACTIVATED CHEMISORPTION OF N_2 ON Ni SURFACE AND La FILM
13
作者 Shumin Shao, Guangkang Xi, Junrong Wang, Shenglin Li Xuezhu Yang, Jinhe Wang, Tianxi He, Baoxia Yu Department of Electron Science, Nankai University, 300071 Tianjin, China 《真空科学与技术学报》 EI CAS CSCD 1992年第Z1期263-266,共4页
The activated chemisorption of N<sub>2</sub> on Ni (poly) and La film was performed on a molecular beam—surface scattering apparatus. Experimental results indicate that the initial sticking probability ... The activated chemisorption of N<sub>2</sub> on Ni (poly) and La film was performed on a molecular beam—surface scattering apparatus. Experimental results indicate that the initial sticking probability s<sub>o</sub> increases linearly from 0 to 0.03 as normal component of translational energy of the molecuar beam E<sub>n</sub> increases from 11.00 to 19.91 kcal/mol for N<sub>2</sub>/Ni system and S<sub>0</sub> from 0 to 0. 10 as E<sub>n</sub> from 10. 40 to 19.91 kcal/mol for N<sub>2</sub>/La system. The apparent activation energy △E are 6.16 kcal/mol and 5.30 kcal/mol for N<sub>2</sub>/Ni and N<sub>2</sub>/La systems respectively. 展开更多
关键词 PRO A MOLECULAR BEAM INVESTIGATION ON ACTIVATED chemisorption OF N2 ON Ni SURFACE AND La FILM LA NI
在线阅读 下载PDF
A QUANTUM CHEMISTRY STUDY ON THE SIZE-DEPENDENCE OF THE CHEMISORPTION OF AMMONIA AND CARBON MONOXIDE ON ALUMINUM CLUSTERS
14
作者 Lin Feng LI Xian Zhang GU Mu Zhen LIAO and Guo Shi WU Department of Chemistry,Tainghua University,Beijing 100084 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第3期253-254,共2页
The chemisorption intensities of NH_3 and CO on aluminum clusters A1_n(n=l-13) have been theoretically predicted by using CNDO/2 method and properly selecting the clusters' geometries.The results show that the che... The chemisorption intensities of NH_3 and CO on aluminum clusters A1_n(n=l-13) have been theoretically predicted by using CNDO/2 method and properly selecting the clusters' geometries.The results show that the chemisorptions of NH_3 and GO on Al_2,Al_6 and Al_12 are magically stable and thus are in good agreement with the experimental results.In addition,an electronic structure analysis is made to expound the nature of such a size effect. 展开更多
关键词 A QUANTUM CHEMISTRY STUDY ON THE SIZE-DEPENDENCE OF THE chemisorption OF AMMONIA AND CARBON MONOXIDE ON ALUMINUM CLUSTERS CNDO NH
在线阅读 下载PDF
Elucidating the Chemisorption Phenomena in SERS Studies via Computational Modeling
15
作者 Yvonne E. Ejorh William H. Ilsley Beng Guat Ooi 《Optics and Photonics Journal》 2018年第6期212-234,共23页
Colloidal gold solutions with nanostars and nanospheres as well as KlariteTM gold and gold-copper bimetallic substrates were used for SERS analysis of aniline and nitroaniline isomers to investigate their chemisorptio... Colloidal gold solutions with nanostars and nanospheres as well as KlariteTM gold and gold-copper bimetallic substrates were used for SERS analysis of aniline and nitroaniline isomers to investigate their chemisorption phenomena. Computational modeling based on Density Functional Theory (DFT) was used in conjunction with the SERS analysis to study the adsorption behaviors of the analytes on metal surfaces. Gold nanospheres and KlariteTM samples produced about a 10-fold increase in signal enhancement compared to gold nanostars for the SERS analysis of aniline, nitroaniline isomers, and nitrobenzene. Signal enhancement is significantly greater for aniline compared to nitrobenzene and it is dependent on the proximity of the NH2 to the NO2 group for the nitroaniline isomers. Charge-transfer in chemisorbed analytes is an important contributing factor for SERS signal. The relative strengths of enhancement can be predicted by the DFT calculation of the HOMO-LUMO energy gaps of the analyte-metal cluster. Aniline and the three nitroaniline isomers showed stronger preference for the copper substrates if both the gold and copper substrates are present. The NO2 group in 2-nitroaniline has a very strong preference and affinity for the copper in the Au-Cu bimetallic cluster. 展开更多
关键词 Surface-Enhanced RAMAN Spectroscopy (SERS) NITROANILINE ISOMERS Nanoparticles CHARGE-TRANSFER chemisorption Density Functional Theory (DFT)
在线阅读 下载PDF
Density functional theory study of H, C and O chemisorption on UN(001) and(111) surfaces
16
作者 李如松 何彬 +2 位作者 许鹏 王飞 马文彦 《Nuclear Science and Techniques》 SCIE CAS CSCD 2014年第5期68-77,共10页
We performed density functional theory calculations of H, C, and O chemisorption on the UN(001) and(111) surfaces using the generalized gradient approximation(GGA) and the Hubbard U parameter and revised Perdew-Burke-... We performed density functional theory calculations of H, C, and O chemisorption on the UN(001) and(111) surfaces using the generalized gradient approximation(GGA) and the Hubbard U parameter and revised Perdew-Burke-Ernzerhof(RPBE) exchange-correlation functional at non-spin polarized level with the periodic slab model. Chemisorption energies vs. distance of molecules from UN(001) and UN(111) surfaces have been optimized for four symmetrical chemisorption sites, respectively. The results show that the Hollow, N-top, and Hollow adsorption sites are the most stable sites for H, C, and O atoms with chemisorption energies of 13.06,25.50 and 27.34 kJ/mol for UN(001) surface, respectively. From the point of adsorbent(UN(001) and UN(111)surfaces in this paper), interaction of O with the chemisorbed surface is of the maximum magnitude, then C and H, which are in agreement with electronegativities of individual atoms. For the UN(001) surface, U-N bond lengths change relatively little(< 9%) as a result of H chemisorption, however C and O chemisorptions result in remarkable changes for U-N bond lengths in interlayer(> 10%). Electronic structure calculations indicate that Bridge position is equivalent with Hollow position, and the most stable chemisorption position for H, C,and O atoms are all Bridge(or Hollow) position for the UN(111) surface. Calculated electronic density of states(DOSs) demonstrate electronic charge transfer between s, p orbitals in chemisorbed atoms and U 6d, 5f orbitals. 展开更多
关键词 化学吸附能 密度泛函理论 联合国 表面相互作用 吸附位置 广义梯度近似 电子结构 计算表
在线阅读 下载PDF
The Ab Initio Studies of NO Chemisorption on TiO_2(110) Surface
17
作者 吴立明 章永凡 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 1999年第4期304-309,共6页
The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were ... The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were calculated by use of ab initio cluster method. We carried out optimization of the geometry, calculation of the chemisorption energy and analysis of the Mulliken population to those adsorption models. According to the calculation results, it can be got that the adsorbed decomposition of NO on defect surface is more advantageous and M6 and M12 are the important models to NO chemisorption and decomposition on TiO2 surface. 展开更多
关键词 TiO2 (110) surface NO chemisorption quantum chemistry
全文增补中
Porous sorbents for direct capture of carbon dioxide from ambient air 被引量:2
18
作者 Yuchen Zhang Lifeng Ding +3 位作者 Zhenghe Xie Xin Zhang Xiaofeng Sui Jian-Rong Li 《Chinese Chemical Letters》 2025年第3期125-133,共9页
Large-scale deployment of carbon dioxide(CO_(2))removal technology is an essential step to cope with global warming and achieve carbon neutrality.Direct air capture(DAC)has recently received increasing attention given... Large-scale deployment of carbon dioxide(CO_(2))removal technology is an essential step to cope with global warming and achieve carbon neutrality.Direct air capture(DAC)has recently received increasing attention given the high flexibility to remove CO_(2)from discrete sources.Porous materials with adjustable pore characteristics are promising sorbents with low or no latent heat of vaporization.This review article has summarized the recent development of porous sorbents for DAC,with a focus of pore engineering strategy and adsorption mechanism.Physisorbents such as zeolites,porous carbons,metal-organic frameworks(MOFs),and amine-modified chemisorbents have been discussed and their challenges in practical application have been analyzed.At last,future directions have been proposed,and it is expected to inspire collaborations from chemistry,environment,material science and engineering communities. 展开更多
关键词 Direct air capture Carbon neutrality Porous materials PHYSISORPTION chemisorption
原文传递
载镁含油污泥基活性炭的制备及其对甲基橙的吸附性能
19
作者 王玉蝶 何丕文 +1 位作者 彭峰 黄向阳 《精细化工》 北大核心 2025年第8期1831-1840,共10页
首先,含油污泥经600℃热解得到了含油污泥基活性炭(OS);再以MgCl_(2)为活化剂,将OS高温热解得到了载镁污泥基活性炭(M-OS)。通过BET、SEM、XRD、XPS和FTIR对M-OS进行了表征。将M-OS用于水体中甲基橙(MO)的吸附去除,通过单因素实验,考察... 首先,含油污泥经600℃热解得到了含油污泥基活性炭(OS);再以MgCl_(2)为活化剂,将OS高温热解得到了载镁污泥基活性炭(M-OS)。通过BET、SEM、XRD、XPS和FTIR对M-OS进行了表征。将M-OS用于水体中甲基橙(MO)的吸附去除,通过单因素实验,考察了M-OS的制备和吸附条件对MO吸附性能的影响,推测了其对MO的吸附机理。结果表明,OS加入量为1.5 g、热解温度为800℃、活化时间为2 h制备的M-OS(M-OS-1)具有最高的MO吸附量和去除率;在吸附时间360 min、投加量100 mg的条件下,M-OS-1对100 mL初始质量浓度200 mg/L的MO水溶液(初始pH=5)的吸附量为172.47 mg/g,去除率为86.24%;镁主要是以MgO的形式负载在OS表面上,M-OS-1的比表面积为30.91 m^(2)/g,M-OS-1对MB的吸附过程属于自发过程,符合拟二级吸附动力学模型(R^(2)=0.97)和Langmuir等温模型(R^(2)=0.94),根据等温模型测试得到其对MB的最大吸附量为3901.87 mg/g;M-OS-1对MO的吸附主要是表面络合、羟基和孔隙填充等多种作用的结果。 展开更多
关键词 含油污泥 活性炭 甲基橙 氧化镁 化学吸附 水处理技术
原文传递
HEMA改性PDMS/PES复合膜制备及化学吸附蛋白性能
20
作者 张芮萌 于奕菲 +3 位作者 陈星宇 武俊良 张心芦 张秀娟 《精细化工》 北大核心 2025年第8期1779-1786,共8页
以甲基丙烯酸羟乙酯(HEMA)和聚二甲基硅氧烷(PDMS)为原料,通过共聚反应制备了两亲性聚合物HEMA-PDMS,将其涂覆在经聚乙二醇(PEG)造孔和相转化法得到的聚醚砜(PES)微孔支撑基膜表面,制备了HEMA-PDMS/PES复合膜。利用SEM、FTIR、水接触角... 以甲基丙烯酸羟乙酯(HEMA)和聚二甲基硅氧烷(PDMS)为原料,通过共聚反应制备了两亲性聚合物HEMA-PDMS,将其涂覆在经聚乙二醇(PEG)造孔和相转化法得到的聚醚砜(PES)微孔支撑基膜表面,制备了HEMA-PDMS/PES复合膜。利用SEM、FTIR、水接触角测定仪和TGA对其进行了表征与测试,通过气体渗透性实验和溶血率评价了HEMA-PDMS/PES复合膜的CO_(2)、O_(2)渗透率以及溶血性能,考察了吸附温度、吸附时间及牛血清白蛋白(BSA)质量浓度对其吸附性能的影响,探究了其吸附动力学和热力学过程。结果表明,HEMA-PDMS/PES复合膜表面致密无缺陷,400℃前无质量损失,其表面水触角约为40°;HEMA-PDMS/PES复合膜的CO_(2)渗透率是O_(2)渗透率的6.53倍,并具备较低的溶血率(0.207%~0.434%);与未经改性的PDMS/PES复合膜相比,HEMA-PDMS/PES复合膜的BSA最大吸附量最多降低了13.494%;HEMA-PDMS/PES复合膜的吸附等温线符合Langmuir吸附模型和准二级动力学吸附模型,其对BSA的吸附过程为化学吸附,BSA的极性基团与HEMA极性基团相互作用形成的氢键导致BSA吸附在膜表面。 展开更多
关键词 甲基丙烯酸羟乙酯 聚二甲基硅氧烷 蛋白吸附 亲水改性 化学吸附 生物工程
原文传递
上一页 1 2 19 下一页 到第
使用帮助 返回顶部