This article deals with investigating the effect of cut-outs on the natural frequencies of magneto-electroelastic(MEE)plates incorporating finite element methods based on higher order shear deformation theory(HSDT).In...This article deals with investigating the effect of cut-outs on the natural frequencies of magneto-electroelastic(MEE)plates incorporating finite element methods based on higher order shear deformation theory(HSDT).In order to consider the influence of cut-out,the energy of the cut-out domain is subtracted from the total energy of the entire plate.The governing equations of motions are derived through incorporating Hamilton’s principle and the solution is obtained using condensation technique.The proposed numerical formulation is verified with the results of previously published literature as well as the numerical software.In addition,this research focuses on evaluating the effect of geometrical skewness and boundary conditions on the frequency response.The influence of cut-outs on the degree of coupling between magnetic,electric and elastic fields is also investigated.展开更多
对固-气两相颗粒多孔材料导热系数的预测,尚未见以实验数据对其各预测模型进行分析及验证其准确度的相关文献。本文利用断电热线法测定石英砂、碳化硅、工程沙以及煤灰的导热系数;将模型预测结果与实验数据进行对比分析,结果表明,Kunii ...对固-气两相颗粒多孔材料导热系数的预测,尚未见以实验数据对其各预测模型进行分析及验证其准确度的相关文献。本文利用断电热线法测定石英砂、碳化硅、工程沙以及煤灰的导热系数;将模型预测结果与实验数据进行对比分析,结果表明,Kunii and Smith模型误差小;考虑孔隙率的影响,利用实测数据对Kunii and Smith模型进行修正,给出新的预测模型;通过与国外学者给出的实测导热系数的对比,验证了本文给出的修正模型的准确性。展开更多
文摘This article deals with investigating the effect of cut-outs on the natural frequencies of magneto-electroelastic(MEE)plates incorporating finite element methods based on higher order shear deformation theory(HSDT).In order to consider the influence of cut-out,the energy of the cut-out domain is subtracted from the total energy of the entire plate.The governing equations of motions are derived through incorporating Hamilton’s principle and the solution is obtained using condensation technique.The proposed numerical formulation is verified with the results of previously published literature as well as the numerical software.In addition,this research focuses on evaluating the effect of geometrical skewness and boundary conditions on the frequency response.The influence of cut-outs on the degree of coupling between magnetic,electric and elastic fields is also investigated.
文摘对固-气两相颗粒多孔材料导热系数的预测,尚未见以实验数据对其各预测模型进行分析及验证其准确度的相关文献。本文利用断电热线法测定石英砂、碳化硅、工程沙以及煤灰的导热系数;将模型预测结果与实验数据进行对比分析,结果表明,Kunii and Smith模型误差小;考虑孔隙率的影响,利用实测数据对Kunii and Smith模型进行修正,给出新的预测模型;通过与国外学者给出的实测导热系数的对比,验证了本文给出的修正模型的准确性。