The aim of this study was to establish a control system for saccharification process using quality control charts. To achieve this goal, temperature, pH and brix were measured at 12 minutes intervals for 15 consecutiv...The aim of this study was to establish a control system for saccharification process using quality control charts. To achieve this goal, temperature, pH and brix were measured at 12 minutes intervals for 15 consecutive batches which took 2 hours each. The time variations for three process parameters were assessed to establish a good understanding of the saccharification process. The temperature varied between 58℃ and 62℃ while the pH decreased slowly due to oxidation, values of which varied between 5.7 and 5.0. Brix values increased linearly with time. The initial and final values of the three parameters varied from one batch to another. Of the three parameters, brix was not well represented on the quality control charts due to wide difference between initial and final values during saccharification. The final brix values varied between batches, from 10.6% to 11.6%. The control charts used in this study were X-bar and Range charts. The rules for interpreting control charts were implemented for both X-bar and R charts, results of which showed that the process was out of control, although some rules were not violated due to little number of batches studied. The values of for temperature and pH data (2.27℃ and 0.35, respectively) were lower compared to brix data (11.2%). The corresponding values of span between control limits, SP<sub>x</sub> and SP<sub>R</sub> for temperature and pH were also comparatively lower than those established from brix data. Due to larger values of for brix measurements, the corresponding control charts for brix were insensitive in identifying out-of-control points during saccharification process.展开更多
The identification of control chart patterns is very important in statistical process control. Control chart patterns are categorized as natural and unnatural. The presence of unnatural patterns means that a process i...The identification of control chart patterns is very important in statistical process control. Control chart patterns are categorized as natural and unnatural. The presence of unnatural patterns means that a process is out of statistical control and there are assignable causes for process variation that should be investigated. This paper proposes an artificial neural network algorithm to identify the three basic control chart patterns;natural, shift, and trend. This identification is in addition to the traditional statistical detection of runs in data, since runs are one of the out of control situations. It is assumed that a process starts as a natural pattern and then may undergo only one out of control pattern at a time. The performance of the proposed algorithm was evaluated by measuring the probability of success in identifying the three basic patterns accurately, and comparing these results with previous research work. The comparison showed that the proposed algorithm realized better identification than others.展开更多
This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving ...This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving average behavior—SARMA(1,1)L under exponential white noise.Unlike previous works that rely on simplified models such as AR(1)or assume independence,this research derives for the first time an exact two-sided Average Run Length(ARL)formula for theModified EWMAchart under SARMA(1,1)L conditions,using a mathematically rigorous Fredholm integral approach.The derived formulas are validated against numerical integral equation(NIE)solutions,showing strong agreement and significantly reduced computational burden.Additionally,a performance comparison index(PCI)is introduced to assess the chart’s detection capability.Results demonstrate that the proposed method exhibits superior sensitivity to mean shifts in autocorrelated environments,outperforming existing approaches.The findings offer a new,efficient framework for real-time quality control in complex seasonal processes,with potential applications in environmental monitoring and intelligent manufacturing systems.展开更多
To monitor the quality characteristics of a process, appropriate graphical and statistical tools must be used. These tools are capable of showing the evolution over time of the behavior of the quality characteristics ...To monitor the quality characteristics of a process, appropriate graphical and statistical tools must be used. These tools are capable of showing the evolution over time of the behavior of the quality characteristics (measurable or countable) and detecting situations that seem to present certain anomalies. The control chart is one of these tools widely used in quality management. In the process of managing the COVID-19 pandemic, this tool will make it possible to know at all times whether the parameters monitored such as the positivity rate, the recovery rate, and the mortality rate, are under control and to act accordingly. Monitoring cure and mortality rates will also show us the effectiveness of the treatments used.展开更多
Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other m...Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other model parameters,so the economic design method is often not effective in producing charts that can quickly detect small shifts before substantial losses occur;on the other hand,in many cases,only one type of process shift or only one pair of process shifts are taken into consideration,which may not correctly reflect the actual process conditions.To improve the behavior of economic design of control chart,a cost & loss model with Taguchi's loss function for the economic design of X & S control charts is embellished,which is regarded as an optimization problem with multiple statistical constraints.The optimization design is also carried out based on a number of combinations of process shifts collected from the field operation of the conventional control charts,thus more hidden information about the shift combinations is mined and employed to the optimization design of control charts.At the same time,an improved particle swarm optimization(IPSO) is developed to solve such an optimization problem in design of X & S control charts,IPSO is first tested for several benchmark problems from the literature and evaluated with standard performance metrics.Experimental results show that the proposed algorithm has significant advantages on obtaining the optimal design parameters of the charts.The proposed method can substantially reduce the total cost(or loss) of the control charts,and it will be a promising tool for economic design of control charts.展开更多
A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direct...A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direction (FDD) between each normal and fault operations,and each FDD thus decided constructs the feature space of each fault operation.Individuals control charts (XmR charts) are used to monitor multivariate processes using the process data projected onto feature spaces.Upper control limit (UCL) and lower control limit (LCL) on each feature space from normal process operation are calculated for XmR charts,and are used to distinguish fault from normal.A variation trend on an XmR chart reveals the type of relevant fault operation.Applications to Tennessee Eastman simulation processes show that this proposed method can result in better monitoring performance than principal component analysis (PCA)-based methods and can better identify step type faults on XmR charts.展开更多
Consistent high-quality and defect-free production is the demand of the day. The product recall not only increases engineering and manufacturing cost but also affects the quality and the reliability of the product in ...Consistent high-quality and defect-free production is the demand of the day. The product recall not only increases engineering and manufacturing cost but also affects the quality and the reliability of the product in the eye of users. The monitoring and improvement of a manufacturing process are the strength of statistical process control. In this article we propose a process monitoring memory-based scheme for continuous data under the assumption of normality to detect small non-random shift patterns in any manufacturing or service process.The control limits for the proposed scheme are constructed. The in-control and out-of-control average run length(AVL) expressions have been derived for the performance evaluation of the proposed scheme. Robustness to non-normality has been tested after simulation study of the run length distribution of the proposed scheme, and the comparisons with Shewhart and exponentially weighted moving average(EWMA) schemes are presented for various gamma and t-distributions. The proposed scheme is effective and attractive as it has one design parameter which differentiates it from the traditional schemes. Finally, some suggestions and recommendations are made for the future work.展开更多
A unified approach is proposed for making a continuity adjustment on some control charts for attributes, e.g., np-chart and c-chart, through adding a uniform (0, 1) random observation to the conventional sample statis...A unified approach is proposed for making a continuity adjustment on some control charts for attributes, e.g., np-chart and c-chart, through adding a uniform (0, 1) random observation to the conventional sample statistic (e.g., and c <SUB>i </SUB>). The adjusted sample statistic then has a continuous distribution. Consequently, given any Type I risk α (the probability that the sample statistic is on or beyond the control limits), control charts achieving the exact value of α can be readily constructed. Guidelines are given for when to use the continuity adjustment control chart, the conventional Shewhart control chart (with ±3 standard deviations control limits), and the control chart based on the exact distribution of the sample statistic before adjustment.展开更多
文摘The aim of this study was to establish a control system for saccharification process using quality control charts. To achieve this goal, temperature, pH and brix were measured at 12 minutes intervals for 15 consecutive batches which took 2 hours each. The time variations for three process parameters were assessed to establish a good understanding of the saccharification process. The temperature varied between 58℃ and 62℃ while the pH decreased slowly due to oxidation, values of which varied between 5.7 and 5.0. Brix values increased linearly with time. The initial and final values of the three parameters varied from one batch to another. Of the three parameters, brix was not well represented on the quality control charts due to wide difference between initial and final values during saccharification. The final brix values varied between batches, from 10.6% to 11.6%. The control charts used in this study were X-bar and Range charts. The rules for interpreting control charts were implemented for both X-bar and R charts, results of which showed that the process was out of control, although some rules were not violated due to little number of batches studied. The values of for temperature and pH data (2.27℃ and 0.35, respectively) were lower compared to brix data (11.2%). The corresponding values of span between control limits, SP<sub>x</sub> and SP<sub>R</sub> for temperature and pH were also comparatively lower than those established from brix data. Due to larger values of for brix measurements, the corresponding control charts for brix were insensitive in identifying out-of-control points during saccharification process.
文摘The identification of control chart patterns is very important in statistical process control. Control chart patterns are categorized as natural and unnatural. The presence of unnatural patterns means that a process is out of statistical control and there are assignable causes for process variation that should be investigated. This paper proposes an artificial neural network algorithm to identify the three basic control chart patterns;natural, shift, and trend. This identification is in addition to the traditional statistical detection of runs in data, since runs are one of the out of control situations. It is assumed that a process starts as a natural pattern and then may undergo only one out of control pattern at a time. The performance of the proposed algorithm was evaluated by measuring the probability of success in identifying the three basic patterns accurately, and comparing these results with previous research work. The comparison showed that the proposed algorithm realized better identification than others.
基金financially by the National Research Council of Thailand(NRCT)under Contract No.N42A670894.
文摘This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving average behavior—SARMA(1,1)L under exponential white noise.Unlike previous works that rely on simplified models such as AR(1)or assume independence,this research derives for the first time an exact two-sided Average Run Length(ARL)formula for theModified EWMAchart under SARMA(1,1)L conditions,using a mathematically rigorous Fredholm integral approach.The derived formulas are validated against numerical integral equation(NIE)solutions,showing strong agreement and significantly reduced computational burden.Additionally,a performance comparison index(PCI)is introduced to assess the chart’s detection capability.Results demonstrate that the proposed method exhibits superior sensitivity to mean shifts in autocorrelated environments,outperforming existing approaches.The findings offer a new,efficient framework for real-time quality control in complex seasonal processes,with potential applications in environmental monitoring and intelligent manufacturing systems.
文摘To monitor the quality characteristics of a process, appropriate graphical and statistical tools must be used. These tools are capable of showing the evolution over time of the behavior of the quality characteristics (measurable or countable) and detecting situations that seem to present certain anomalies. The control chart is one of these tools widely used in quality management. In the process of managing the COVID-19 pandemic, this tool will make it possible to know at all times whether the parameters monitored such as the positivity rate, the recovery rate, and the mortality rate, are under control and to act accordingly. Monitoring cure and mortality rates will also show us the effectiveness of the treatments used.
基金supported by Defense Industrial Technology Development Program of China (Grant No. A2520110003)
文摘Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other model parameters,so the economic design method is often not effective in producing charts that can quickly detect small shifts before substantial losses occur;on the other hand,in many cases,only one type of process shift or only one pair of process shifts are taken into consideration,which may not correctly reflect the actual process conditions.To improve the behavior of economic design of control chart,a cost & loss model with Taguchi's loss function for the economic design of X & S control charts is embellished,which is regarded as an optimization problem with multiple statistical constraints.The optimization design is also carried out based on a number of combinations of process shifts collected from the field operation of the conventional control charts,thus more hidden information about the shift combinations is mined and employed to the optimization design of control charts.At the same time,an improved particle swarm optimization(IPSO) is developed to solve such an optimization problem in design of X & S control charts,IPSO is first tested for several benchmark problems from the literature and evaluated with standard performance metrics.Experimental results show that the proposed algorithm has significant advantages on obtaining the optimal design parameters of the charts.The proposed method can substantially reduce the total cost(or loss) of the control charts,and it will be a promising tool for economic design of control charts.
基金Sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars of the Ministry of Education of China
文摘A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direction (FDD) between each normal and fault operations,and each FDD thus decided constructs the feature space of each fault operation.Individuals control charts (XmR charts) are used to monitor multivariate processes using the process data projected onto feature spaces.Upper control limit (UCL) and lower control limit (LCL) on each feature space from normal process operation are calculated for XmR charts,and are used to distinguish fault from normal.A variation trend on an XmR chart reveals the type of relevant fault operation.Applications to Tennessee Eastman simulation processes show that this proposed method can result in better monitoring performance than principal component analysis (PCA)-based methods and can better identify step type faults on XmR charts.
基金This research was supported by National Natural Science Foundation of China(10371074)RGC Competitive Earmarked Research Grants(HKUST6183/03E and HKUST6232/04E).
文摘Consistent high-quality and defect-free production is the demand of the day. The product recall not only increases engineering and manufacturing cost but also affects the quality and the reliability of the product in the eye of users. The monitoring and improvement of a manufacturing process are the strength of statistical process control. In this article we propose a process monitoring memory-based scheme for continuous data under the assumption of normality to detect small non-random shift patterns in any manufacturing or service process.The control limits for the proposed scheme are constructed. The in-control and out-of-control average run length(AVL) expressions have been derived for the performance evaluation of the proposed scheme. Robustness to non-normality has been tested after simulation study of the run length distribution of the proposed scheme, and the comparisons with Shewhart and exponentially weighted moving average(EWMA) schemes are presented for various gamma and t-distributions. The proposed scheme is effective and attractive as it has one design parameter which differentiates it from the traditional schemes. Finally, some suggestions and recommendations are made for the future work.
基金the Natural Science and Engineering Research Council of Canada and Research Grant Council of Hong Kong grants.
文摘A unified approach is proposed for making a continuity adjustment on some control charts for attributes, e.g., np-chart and c-chart, through adding a uniform (0, 1) random observation to the conventional sample statistic (e.g., and c <SUB>i </SUB>). The adjusted sample statistic then has a continuous distribution. Consequently, given any Type I risk α (the probability that the sample statistic is on or beyond the control limits), control charts achieving the exact value of α can be readily constructed. Guidelines are given for when to use the continuity adjustment control chart, the conventional Shewhart control chart (with ±3 standard deviations control limits), and the control chart based on the exact distribution of the sample statistic before adjustment.