[Objective] To analyze the input and output in rice cultivation based on CD function. [Method] Based on the input factors, Cobb-Douglas production (CD) function was used to do the quantitative analysis on the input-...[Objective] To analyze the input and output in rice cultivation based on CD function. [Method] Based on the input factors, Cobb-Douglas production (CD) function was used to do the quantitative analysis on the input-output in rice production with rice growers as the objective. [Result] Considering the substitution effect of labor in- put and capital input, under the same technical conditions, the effect of increasing labor input on the rice production in per 667 m2 was negative, based on which 2 pieces of policy suggestions were put forward to promote the transfer of surplus la- bor force of rice growers and ensure the capital supply for rice production. [Conclusion] This study laid the foundation for the realization of reasonable allocation of rice production resources.展开更多
Recently, businessmen as well as industrialists are very much concerned about the theory of firm in order to make correct decisions regarding what items, how much and how to produce them. All these decisions are direc...Recently, businessmen as well as industrialists are very much concerned about the theory of firm in order to make correct decisions regarding what items, how much and how to produce them. All these decisions are directly related with the cost considerations and market situations where the firm is to be operated. In this regard, this paper should be helpful in suggesting the most suitable functional form of production process for the major manufacturing industries in Bangladesh. This paper considers Cobb-Douglas (C-D) production function with additive error and multiplicative error term. The main purpose of this paper is to select the appropriate Cobb-Douglas production model for measuring the production process of some selected manufacturing industries in Bangladesh. We use different model selection criteria to compare the Cobb-Douglas production function with additive error term to Cobb-Douglas production function with multiplicative error term. Finally, we estimate the parameters of the production function by using optimization subroutine.展开更多
基金Supported by the Philosophy and Social Science Foundation of Hunan Province,China(2010YBA012)~~
文摘[Objective] To analyze the input and output in rice cultivation based on CD function. [Method] Based on the input factors, Cobb-Douglas production (CD) function was used to do the quantitative analysis on the input-output in rice production with rice growers as the objective. [Result] Considering the substitution effect of labor in- put and capital input, under the same technical conditions, the effect of increasing labor input on the rice production in per 667 m2 was negative, based on which 2 pieces of policy suggestions were put forward to promote the transfer of surplus la- bor force of rice growers and ensure the capital supply for rice production. [Conclusion] This study laid the foundation for the realization of reasonable allocation of rice production resources.
文摘Recently, businessmen as well as industrialists are very much concerned about the theory of firm in order to make correct decisions regarding what items, how much and how to produce them. All these decisions are directly related with the cost considerations and market situations where the firm is to be operated. In this regard, this paper should be helpful in suggesting the most suitable functional form of production process for the major manufacturing industries in Bangladesh. This paper considers Cobb-Douglas (C-D) production function with additive error and multiplicative error term. The main purpose of this paper is to select the appropriate Cobb-Douglas production model for measuring the production process of some selected manufacturing industries in Bangladesh. We use different model selection criteria to compare the Cobb-Douglas production function with additive error term to Cobb-Douglas production function with multiplicative error term. Finally, we estimate the parameters of the production function by using optimization subroutine.