Proteolysis-targeting chimera(PROTAC)has emerged as an efficient strategy to accurately control intracellular protein levels.However,conventional PROTACs are generally limited by nonspecific protein degradation and of...Proteolysis-targeting chimera(PROTAC)has emerged as an efficient strategy to accurately control intracellular protein levels.However,conventional PROTACs are generally limited by nonspecific protein degradation and off-tissue side effects.Particularly,there is a lack of effective chemical tools for visualizing protein degradation.Herein,a near-infrared fluorescent and theranostic PROTAC(PRO-S-DCM)was designed for imaging the degradation of bromodomain-containing protein 4(BRD4).PRO-S-DCM could be tumor-specifically activated and exhibited favorable imaging effects both in vitro and in vivo.PRO-S-DCM was proven to be a theranostic probe,which potently inhibited growth,invasion and migration of He La cells and induced cell apoptosis.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFC3401500 to C.Sheng)the National Natural Science Foundation of China(No.82030105 to C.Sheng and Nos.22077138,22377145 to S.Wu)Shanghai Rising-Star Program(No.22QA1411300 to S.Wu)。
文摘Proteolysis-targeting chimera(PROTAC)has emerged as an efficient strategy to accurately control intracellular protein levels.However,conventional PROTACs are generally limited by nonspecific protein degradation and off-tissue side effects.Particularly,there is a lack of effective chemical tools for visualizing protein degradation.Herein,a near-infrared fluorescent and theranostic PROTAC(PRO-S-DCM)was designed for imaging the degradation of bromodomain-containing protein 4(BRD4).PRO-S-DCM could be tumor-specifically activated and exhibited favorable imaging effects both in vitro and in vivo.PRO-S-DCM was proven to be a theranostic probe,which potently inhibited growth,invasion and migration of He La cells and induced cell apoptosis.