期刊文献+
共找到1,322篇文章
< 1 2 67 >
每页显示 20 50 100
Source and accumulation process of Jurassic biodegraded oil in the Eastern Junggar Basin,NW China 被引量:2
1
作者 Mao-Guo Hou Ming Zha +4 位作者 Xiu-Jian Ding He Yin Bao-Li Bian Hai-Lei Liu Zhong-Fa Jiang 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1033-1046,共14页
Biodegradation usually obscures or even radically alters the original characteristics of oil biomarkers.The mixing of oil from multiple sources makes each source difficult to trace.Identifying the source of biodegrade... Biodegradation usually obscures or even radically alters the original characteristics of oil biomarkers.The mixing of oil from multiple sources makes each source difficult to trace.Identifying the source of biodegraded oil from multiple sources has always been a hard nut to crack.Rising to this challenge,in this study-we carried out a comprehensive investigation of biodegradation impacts,oil-source correlation,and oil charging history to trace the source and reveal the mixing process of biodegraded oil in the Toutunhe Formation(J_(2)t)in the eastern Junggar Basin,NW China.The oil of this area was biodegraded to different extent,consequently,many commonly used biomarker parameters(e.g.Pr/Ph,Pr/n C_(17))became less powerful for oil-source correlation.To address this problem,the resistance of many biomarkers to biodegradation was analyzed,and those of high bio resistance were selected to generate a more reliable oil-source correlation.The results revealed that biodegraded oil was a mixture of oil sourced from Lucaogou Formation(P_(2)l)and Xiaoquangou Formation(T_(2-3)xq).Core sample observation,microscopic fluorescent analysis and fluid inclusion analysis were combined to analyze comprehensively oil charging history.The analysis of accumulation process exhibited that the existing oil in J_(2)t was a mixture originated from the P_(2)l and T_(2-3)xq source rocks in two separate charging stages when it underwent a complicated process of charging,biodegradation,recharging and mixing. 展开更多
关键词 biodegraded oil Mixed oil Oil-source correlation Oil accumulation process Junggar Basin
原文传递
Biodegraded Oil and Its High Molecular Weight (C_(35+)) n-alkanes in the Qianmiqiao Region in the Bohai Bay Basin, Northern China 被引量:4
2
作者 WANGTieguan ZHUDan +2 位作者 LUHong ZHANGZhihuan YANGChiyin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第4期993-1001,共9页
With a production of 208.2 m3/d, heavy oil was produced by drill stem test (DST) from three shallow reservoirs in Sand Group Nos. Ⅰ and Ⅲ of the Neogene Guantao Formation (NgⅠ and NgⅢ) and the Eogene Dongying Form... With a production of 208.2 m3/d, heavy oil was produced by drill stem test (DST) from three shallow reservoirs in Sand Group Nos. Ⅰ and Ⅲ of the Neogene Guantao Formation (NgⅠ and NgⅢ) and the Eogene Dongying Formation (Ed) in an exploratory well Ban-14-1 within the Qianmiqiao region, Bohai Bay Basin, northern China. Based on the GC and GC-MS data of the NgⅠ and NgⅢ heavy oil samples, all n-alkanes and most isoprenoid hydrocarbons are lost and the GC baseline appears as an evident 'hump', implying a large quantity of unresolved complex mixture (UCM), which typically revealed a result of heavy biodegradation. However, there still is a complete series of C14-C73 n-alkanes in the high-temperature gas chromatograms (HTGC) of the heavy oil, among which, the abundance of C30- n-alkanes are drastically reduced. The C35-C55 high molecular weight (HMW) n-alkanes are at high abundance and show a normal distribution pattern with major peak at C43 and an obvious odd-carbon-number predominance with CPI37-55 and OEP45-49 values of 1.17 and 1.16-1.20, respectively. According to GC-MS analysis, the heavy oil is characterized by dual source inputs of aquatic microbes and terrestrial higher plants. Various steranes and tricyclic terpanes indicate an algal origin, and hopane-type triterpanes, C24 tetracyclic terpane and drimane series show the bacterial contribution. With the odd-carbon-number preference, HMW n-alkanes provide significant information not only on higher plant source input and immaturity, but also on the strong resistibility to biodegradation. 展开更多
关键词 high-temperature gas chromatography (HTGC) high molecular weight (HMW) n-alkane BIODEGRADATION heavy oil Bohai Bay Basin China
在线阅读 下载PDF
Biodegraded and Polyurethane Drape-formed Urea Fertilizer 被引量:2
3
作者 王勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第2期12-14,共3页
Natural water absorbent konjac flour participates in synthesizing biodegraded and polyurethane foamed drape, which is used to release urea slowly.The experimental results indicate that the slowly-releasing velocity of... Natural water absorbent konjac flour participates in synthesizing biodegraded and polyurethane foamed drape, which is used to release urea slowly.The experimental results indicate that the slowly-releasing velocity of urea nitrogen and the degrading velocity of the drape can be controlled by regulating the thicknesses of drapes, the amount of konjac flour and the water content. In addition, the biodegradability of the drape was investigated by burying the specimens in earth afterwards,and results show this drape can be degraded naturally. 展开更多
关键词 polyurethane foam konjac flour slowly-releasing UREA BIODEGRADATION
在线阅读 下载PDF
A GC×GC-ToFMS Investigation of the Unresolved Complex Mixture and Associated Biomarkers in Biodegraded Petroleum 被引量:4
4
作者 WANG Guangli Bernd Rolf Tatsuo SIMONEIT +3 位作者 SHI Shengbao WANG Tieguan ZHONG Ningning WANG Peirong 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第5期1959-1972,共14页
Heavy biodegraded crude oils have larger numbers of coeluting compounds than nonbiodegraded oils, and they are typically not resolved with conventional gas chromatography(GC). This unresolved complex mixture(UCM) ... Heavy biodegraded crude oils have larger numbers of coeluting compounds than nonbiodegraded oils, and they are typically not resolved with conventional gas chromatography(GC). This unresolved complex mixture(UCM) has been investigated using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry(GC×GC-To FMS) within a set of biodegraded petroleums derived from distinct sedimentary basins, including northwestern Sichuan(Neoproterozoic, marine), Tarim(Early Paleozoic, marine), Bohai Bay(Eocene, saline/brackish) and Pearl River Mouth(Eocene, freshwater). In general, the hydrocarbons that constitute the UCM in petroleum saturate fractions can be classified into three catalogues based on the distributions of resolved compounds on two dimensional chromatograms. Group 1 is composed mainly of normal and branched alkanes, isoprenoid alkanes and monocyclic alkanes; Group 2 comprises primarily terpanes ranging from two to five rings, and Group 3 is dominated by monoaromatic hydrocarbons such as tetralins and monoaromatic steranes. In addition, the UCM is source dependent and varies between oil populations. i.e., the UCM of petroleum derived from Precambrian and Early Paleozoic marine, Eocene saline/brackish and freshwater source rocks is specifically rich in higher homologues of A-norsteranes, series of 1,1,3-trimethyl-2-alkylcyclohexanes(carotenoid-derived alkanes), and tetralin and indane compounds, respectively. 展开更多
关键词 unresolved complex mixture(UCM) biomarker source biodegradation comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry(GC×GC-ToFMS)
在线阅读 下载PDF
The effects of biodegradation on biomarker maturity indicators in sequentially biodegraded oils from Liaohe Basin,China 被引量:3
5
作者 BAO JianPing & ZHU CuiShan Key Laboratory of Oil & Gas Resource and Exploration Technology,Ministry of Education,Geochemistry Department,Yangtze University,Jingzhou 434023,China 《Science China Earth Sciences》 SCIE EI CAS 2009年第S1期42-50,共9页
By aid of gas chromatogram/mass spectrometry(GC-MS) ,the distributions and the compositions of biomarkers in a set of sequentially biodegraded oils from Liaohe Basin,China,have been quantitatively analyzed,and it has ... By aid of gas chromatogram/mass spectrometry(GC-MS) ,the distributions and the compositions of biomarkers in a set of sequentially biodegraded oils from Liaohe Basin,China,have been quantitatively analyzed,and it has been found that during the biodegradation process of crude oils,the molecular maturity parameters such as Ts/Tm,homohopane C31 22S/(22S+22R) and sterane C29 20S/(20S+20R) ratios will be affected to different extent. The results show that except homohopane C31 22S/(22S+22R) ratio,Ts/Tm ratio will decrease with increasing biodegradation,but for C29 20S/(20S+20R) ratio,it will almost remain constant in slightly and moderately biodegraded oils,and then will increase quickly in severely biodegraded oils. The main reason is that there are some differences in the ability of resistant biodegradation for different isomer of biomarkers with different stereo configuration,resulting in the fact that destroying rate by bacteria for those biomarkers with weak ability will be higher than those with strong ability in resistant biodegradation. For example,18α(H) -22,29,30-trisnorhopanes(Ts) will be destroyed more quickly than 17α(H) -22,29,30-trisnorshopanres(Tm) ,and 20R isomer is more quickly than 20S isomer for C29 sterane,resulting in the relative ratios changed with increasing biodegradation. Therefore,much more attention should be paid to the biodegradation extent of crude oils and the type of biomarker maturity indicators,when the distributions and the compositions of biomarkers in biodegraded oils are used to determine the maturity of biodegraded oils. 展开更多
关键词 biodegraded OILS STERANE HOPANE biomarkers MATURITY parameters Liaohe Basin
原文传递
The effects of biodegradation on the compositions of aromatic hydrocarbons and maturity indicators in biodegraded oils from Liaohe Basin 被引量:3
6
作者 BAO JianPing & ZHU CuiShan Key Laboratory of Oil & Gas Resource and Exploration Technology,Ministry of Education Geochemistry Department,Yangtze University,Jingzhou 434023,China 《Science China Earth Sciences》 SCIE EI CAS 2009年第S1期59-68,共10页
By the aid of GC-MS technique,a series of sequentially biodegraded oils from Liaohe Basin have been analyzed. The results show that the concentrations and relative compositions of various aromatic compounds in the bio... By the aid of GC-MS technique,a series of sequentially biodegraded oils from Liaohe Basin have been analyzed. The results show that the concentrations and relative compositions of various aromatic compounds in the biodegraded crude oils will change with increasing biodegradation degree. The concentrations of alkyl naphthalenes,alkyl phenanthrenes,alkyl dibenzothiophene are decreased,and the concentration of triaromatic steroids will increase with increasing biodegradation degree in biodegraded oils. Those phenomena indicate that various aromatic compounds are more easily biodegraded by bacteria like other kinds of hydrocarbons such as alkanes,but different series of aromatic compounds have a varied ability to resistant to biodegradation. The ratios of dibenzothiophene to phenenthrene(DBTH/P) and methyl dibenzothiophene to methyl phenanthrene(MDBTH/MP) are related to the features of depositional environment for source rocks such as redox and ancient salinity. However,in biodegraded oils,the two ratios increase quickly with the increase of the biodegradation degree,indicating that they have lost their geochemical significance. In this case,they could not be used to evaluate the features of depositional environment. Methyl phenanthrene index,methyl phenanthrene ratio and methyl dibenzoyhiophene ratio are useful aromatic maturity indicators for the crude oils and the source rocks without vitrinite. But for biodegraded oils,those aromatic maturity indicators will be affected by biodegradation and decrease with the increase of the biodegradation degree. Therefore,those aromatic molecular maturity indicators could not be used for biodegraded oils. 展开更多
关键词 biodegraded OILS ALKYL PHENANTHRENES ALKYL DIBENZOTHIOPHENES aromatic MATURITY indicator Liaohe Basin
原文传递
Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate):Mechanisms and main factors of the degradation 被引量:2
7
作者 Haibo Ye Qianyu Li +2 位作者 Juan Li Didi Li Zhimin Ao 《Chinese Chemical Letters》 2025年第1期158-164,共7页
Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability propertie... Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT. 展开更多
关键词 Biodegradable plastics PBAT Abiotic degradation Degradation mechanism
原文传递
Degradation of oxytetracycline in soil by a Pseudomonas strain 被引量:1
8
作者 Xueqi Guo Weining Qi +1 位作者 Yao Feng Zhaojun Li 《Journal of Integrative Agriculture》 2025年第5期2002-2014,共13页
Oxytetracycline(OTC)is used extensively in animal husbandry and enters the soil in different forms,causing severe environmental pollution.Previous studies have shown that the genus Pseudomonas can potentially degrade ... Oxytetracycline(OTC)is used extensively in animal husbandry and enters the soil in different forms,causing severe environmental pollution.Previous studies have shown that the genus Pseudomonas can potentially degrade antibiotics in the soil environment.Environmental conditions,such as the initial concentration of antibiotics,incubation temperature and others,have significant impacts on the activity of antibiotic-degrading bacteria.However,few reports have clarified the environmental impacts on the effectiveness of Pseudomonas spp.In the present study,we investigated the effects of different initial concentrations of OTC and incubation temperatures,as well as soil sterilization,on OTC degradation by Pseudomonas strain T4.We also focused on the microbial degradation pathways of OTC,and variations in both antibiotic resistance genes(ARGs)and microbial communities with T4 functioning under optimal conditions.The results showed that the most effective degradation occurred under an initial OTC concentration of 2.5 mg kg^(-1)at 30℃in unsterilized soil spiked with T4.These conditions yielded an OTC degradation rate of 69.53%within 63 days.The putative degradation pathways of OTC in the presence of T4 included dehydration,demethylation,deamination,hydroxylation,oxidation and ring opening.Bacteroidetes,Proteobacteria and Acidobacteria played key roles in the biodegradation of OTC with T4 in the soil.The results also showed that tet(G)was the most frequently detected ARGs among the 13 common tetracycline ARGs that were investigated.The bacterial community shift observed in this study may provide new insights into the microbial degradation of OTC in soil. 展开更多
关键词 OXYTETRACYCLINE ARGs PSEUDOMONAS BIODEGRADATION SOIL
在线阅读 下载PDF
Epoxy-Based Chain Extenders in Polylactic Acid (PLA): A Comprehensive Review of Structure, Performance, and Challenges 被引量:1
9
作者 Hao Duan Xiaoyan Shang +3 位作者 Xihao Wu Liuliu Ma Chen Xing Jun Zhu 《Journal of Materials Science and Chemical Engineering》 2025年第1期20-44,共25页
Amid the escalating plastic pollution issue, the development of biodegradable and recyclable polymeric materials has become a focus within the scientific community. Chain extenders, which are an important class of com... Amid the escalating plastic pollution issue, the development of biodegradable and recyclable polymeric materials has become a focus within the scientific community. Chain extenders, which are an important class of compounds, facilitate the elongation of polymer chains through reactive functional groups, thereby enhancing the performance of the materials. Epoxy-based chain extenders, due to their cost-effectiveness, low toxicity, high reaction efficiency, and effective reactivity with hydroxyl and carboxyl groups, have emerged as a promising class of chain extenders. This manuscript comprehensively elaborates on the varieties, structural characteristics, and performance of chain extenders, the challenges they face, and the methods for their modification. Special emphasis is placed on the application of epoxy-based chain extenders in biodegradable polymers, such as polylactic acid (PLA), and their subsequent influence on the structural and performance properties of these materials. 展开更多
关键词 Chain Extender Epoxy Type GMA BIODEGRADABLE PLA RECYCLE
在线阅读 下载PDF
Transcriptomic and biochemical analysis of the mechanism of sodium gluconate promoting the degradation of benzo [a] pyrene by Bacillus subtilis MSC4 被引量:1
10
作者 Rui Chen Tangbing Cui 《Journal of Environmental Sciences》 2025年第6期39-53,共15页
Benzo[a]pyrene(B[a]P)is a carcinogenic environmental pollutant widely present in the environment and can enter the human body through the food chain.It is therefore essential to treat and remediate the B[a]P-contamina... Benzo[a]pyrene(B[a]P)is a carcinogenic environmental pollutant widely present in the environment and can enter the human body through the food chain.It is therefore essential to treat and remediate the B[a]P-contaminated environment.Microbial remediation of B[a]Pcontaminated environments is considered to be one of the most effective strategies,and the addition of biostimulants is a feasible method to further improve the effectiveness of microbial remediation.In this study,we used Bacillus subtilis MSC4 to screen for the stimulation of sodium gluconate,which promoted B[a]P degradation.Based on biochemical and transcriptomic analyses,Sodium gluconate was found to significantly increase the biomass of MSC4 and the expression of most genes involved in B[a]P degradation.Activities of central carbon metabolism,fatty acidβ-oxidation and oxidative phosphorylation were all promoted.The significant increase in acid-induced oxalate decarboxylase expression indicates a decrease in intracellular pH,which promoted the synthesis of acetoin and lactate.Genes involved in the nitrogen cycle,especially nitrification and denitrification,were significantly up-regulated,contributing to B[a]P degradation.Genes involved in the synthesis of enzyme cofactors,including thiamine,molybdenum cofactors,NAD and heme,were up-regulated,which contributes to increasing enzyme activity in metabolic pathways.Up-regulation of genes in flagella assembly,chemotaxis,and lipopeptide synthesis is beneficial for the dissolution and uptake of B[a]P.Genes related to the sugar transport system were upregulated,which facilitates the transport and absorption of monosaccharides and oligosaccharides by MSC4.This study provides a theoretical basis for the further application of sodium gluconate in the treatment of PAH-contaminated sites. 展开更多
关键词 TRANSCRIPTOMIC BIODEGRADATION BENZO[A]PYRENE Bacillus subtilis Sodium gluconate
原文传递
Hepaticojejunostomy and long-term interventional treatment for recurrent biliary stricture after proximal bile duct injury:A case report 被引量:1
11
作者 Ghassan Elsayed Lama Mohamed +2 位作者 Maryam Almasaabi Khalid Barakat Eyad Gadour 《World Journal of Clinical Cases》 2025年第20期72-77,共6页
BACKGROUND Proximal bile duct injury(BDI),which often occurs after laparoscopic cholecystectomy(LC),can lead to complex biliary stricture and recurrent cholangitis.This case report presented a 39-year-old woman who ex... BACKGROUND Proximal bile duct injury(BDI),which often occurs after laparoscopic cholecystectomy(LC),can lead to complex biliary stricture and recurrent cholangitis.This case report presented a 39-year-old woman who experienced proximal BDI during LC in 2017,leading to multiple episodes of cholangitis and subsequent hepaticojejunostomy in 2018.Despite these interventions,persistent biliary complications necessitated repeated hospital admissions and antibiotic treatment.Imaging studies revealed persistent stricture at the site of hepaticojejunostomy,prompting a series of percutaneous procedures,including balloon dilatation and biliary drainage.In August 2024,she underwent biodegradable biliary stenting,which significantly improved her condition.Subsequently,she remained clinically stable for 5 months without further episodes of cholangitis and had improved liver function tests.This case highlighted the complexities of managing postinjury biliary stricture,underscored the potential of biodegradable stents as an effective treatment option,and emphasized the need for a multidisciplinary approach in managing such complications.Long-term follow-up is essential for monitoring treatment effectiveness and preventing recurrence.CASE SUMMARY A 39-year-old female had a routine LC in 2017.The patient sustained a proximal BDI during the surgery.In the months that followed,recurrent bouts of cholangitis occurred.A hepaticojejunostomy biliary reconstruction was performed in 2018.However,hepatic cholangitis persisted.In 2021 and 2022,MRCP scans revealed biliary stasis,duct dilation,and a stricture at the hepaticojejunostomy site.A subsequent percutaneous transhepatic cholangiography(PTC)confirmed these findings and led to drain placement.The treatment included internal and external biliary drain placements,repeated balloon dilations of the stricture,percutaneous transhepatic cholangioscopy to extract intrahepatic lithiasis,and insertion of a biodegradable biliary stent.Since the first PTC intervention,there have been no hospital admissions for cholangitis.Liver function tests showed improvement,and for five months following the biodegradable stenting,the condition remained stable.Long-term surveillance with regular imaging and blood work has been emphasized.The final diagnosis is recurrent biliary stricture secondary to proximal BDI.Treatment,including hepaticojejunostomy,repeated PTC with balloon dilation,and biodegradable biliary stenting,has led to complete drainage of the biliary system.Ongoing follow-up remains crucial for monitoring the patient's progress and maintaining their health.CONCLUSION This case demonstrated how strictures and recurrent cholangitis complicate the management of BDI after LC.A customized and multidisciplinary approach to control chronic biliary disease was proven effective,as shown by the patient’s good outcome.This was achieved by integrating balloon dilatation sessions,biliary drainage,stone clearing,and biodegradable stent placement.Long-term follow-up and continued monitoring remain essential to ensure patient stability and prevent further complications. 展开更多
关键词 Biliary stricture HEPATICOJEJUNOSTOMY Bile duct injury Biliary stent Biodegradable stents Magnetic resonance cholangiopancreatography
暂未订购
A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair
12
作者 Simeon C.Daeschler Katelyn J.W.So +7 位作者 Konstantin Feinberg Marina Manoraj Jenny Cheung Jennifer Zhang Kaveh Mirmoeini JPaul Santerre Tessa Gordon Gregory HBorschel 《Neural Regeneration Research》 SCIE CAS 2025年第1期291-304,共14页
Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies a... Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery. 展开更多
关键词 BIODEGRADABLE local drug delivery nerve injury nerve regeneration nerve wrap TACROLIMUS
暂未订购
Preparation of Biodegradable Polylactic Acid/Ethyl Cellulose/Zein Composite Film and Its Effect on the Preservation of Chilled Fresh Meat
13
作者 ZHOU Ling YU Ya +8 位作者 YUAN Mengting WU Dongxu CHEN Ya LIU Yanan SU Jingjing CHEN Sihan WANG Juhua SHENG Bulei XUE Xiuheng 《食品科学》 北大核心 2025年第15期324-337,共14页
In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were inve... In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were investigated.The results showed that the three materials had satisfactory compatibility in the composite film.Addition of EC and zein effectively improved the mechanical properties,thermodynamic properties,surface hydrophilicity,oxygen permeability,and degradation properties of PLA films.When the ratio of PLA to EC was 3:7,the tensile strength and elongation at break reached maximum values of 16.6 MPa and 30.5%,respectively.Moreover,under different conditions,the composite film exhibited better degradability than the PLA film.The composite film with a 3:7 ratio of PLA to EC had the best performance,with a degradation rate of 21.75%after 84 days.Chilled fresh meat wrapped with the composite film showed significantly improved antioxidant,antibacterial,and water-holding properties. 展开更多
关键词 biodegradable film polylactic acid ethyl cellulose ZEIN chilled fresh meat PRESERVATION
在线阅读 下载PDF
Worm-Like Blood Robots Navigate the Brain to Zap Tumors
14
作者 YAN Fusheng 《Bulletin of the Chinese Academy of Sciences》 2025年第2期114-116,共3页
A type of novel biodegradable fibers,made from magnetic particles and the patient’s own blood,promises an immune-evading brain cancer therapy with minimal invasion.
关键词 BRAIN WORM immune evading biodegradable fibersmade TUMORS magnetic particles blood robots biodegradable fibers
暂未订购
Recent trends of biodegradable mesoporous silica based nanoplatforms for enhanced tumor theranostics
15
作者 Mengwei Ye Qingqing Xu +7 位作者 Huanhuan Jian Yiduo Ding Wenpeng Zhao Chenxiao Wang Junya Lu Shuaipeng Feng Siling Wang Qinfu Zhao 《Chinese Chemical Letters》 2025年第6期15-30,共16页
Mesoporous silica nanoparticles(MsNs)are thought to be an attractive drug delivery material because of their advantages including high specific surface area,tunable pore size and morphology,easy sur-face modification ... Mesoporous silica nanoparticles(MsNs)are thought to be an attractive drug delivery material because of their advantages including high specific surface area,tunable pore size and morphology,easy sur-face modification and good biocompatibility.However,as a result of the poor biodegradability of MsNs,their biomedical applications are limited.To break the bottleneck of limited biomedical applications of MSNs,more and more researchers tend to design biodegradable MSNs(b-MSNs)nanosystems to obtain biodegradable as well as safe and reliable drug delivery carriers.In this review,we focused on sum-marizing strategies to improve the degradability of MsNs and innovatively proposed a series of advan-tages of b-MsNs,including controlled cargo release behavior,multifunctional frameworks,nano-catalysis,bio-imaging capabilities and enhanced therapeutic effects.Based on these advantages,we have inno-vatively summarized the applications of b-MsNs for enhanced tumor theranostics,including enhanced chemotherapy,delivery of nanosensitizers,gas molecules and biomacromolecules,initiation of immune response,synergistic therapies and image-guided tumor diagnostics.Finally,the challenges and further clinical translation potential of nanosystems based on b-MsNs are fully discussed and prospected.We believe that such b-MsNs delivery carriers will provide a timely reference for further applications in tu-mor theranostics. 展开更多
关键词 Biodegradable mesoporous silica nanoparticles Tumor theranostics BIODEGRADABILITY Synergistic therapy Controlled release Drug delivery
原文传递
Degradation of gaseous hydrocarbons in aerated stirred bioreactors inoculated with Rhodococcus erythropolis:Effect of the carbon source and SIFT-MS method development
16
作者 Paula Alejandra Lamprea Pineda Kristof Demeestere +4 位作者 Allan Augusto Alvarado-Alvarado Frank Devlieghere Nico Boon Herman Van Langenhove Christophe Walgraeve 《Journal of Environmental Sciences》 2025年第1期268-281,共14页
The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies.In this study,we evaluated the removal of a gaseous mixture containing toluene,m-xylene,ethylb... The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies.In this study,we evaluated the removal of a gaseous mixture containing toluene,m-xylene,ethylbenzene,cyclohexane,butane,pentane,hexane and heptane in aerated stirred bioreactors inoculated with Rhodococcus erythropolis and operated under non-sterile conditions.For the real-time measurement of hydrocarbons,a novel systematic approachwas implemented using Selected-Ion Flow TubeMass Spectrometry(SIFTMS).The effect of the carbon source(~9.5 ppmv)on(i)the bioreactors’performance(BR1:dosed with only cyclohexane as a single hydrocarbon versus BR2:dosed with a mixture of the 8 hydrocarbons)and(ii)the evolution of microbial communities over time were investigated.The results showed that cyclohexane reached a maximum removal efficiency(RE)of 53%±4%in BR1.In BR2,almost complete removal of toluene,m-xylene and ethylbenzene,being the most water-soluble and easy-to-degrade carbon sources,was observed.REs below 32%were obtained for the remaining compounds.By exposing the microbial consortium to only the five most recalcitrant hydrocarbons,REs between 45%±5%and 98%±1%were reached.In addition,we observed that airborne microorganisms populated the bioreactors and that the type of carbon source influenced the microbial communities developed.The abundance of species belonging to the genus Rhodococcus was below 10%in all bioreactors at the end of the experiments.This work provides fundamental insights to understand the complex behavior of gaseous hydrocarbon mixtures in bioreactors,along with a systematic approach for the development of SIFT-MS methods. 展开更多
关键词 Hydrocarbons SIFT-MS Rhodococcus erythropolis BIODEGRADATION Bioreactors
原文传递
Enhancing the Properties of Biodegradable Food Packaging Films Derived from Agar and Porang-Glucomannan(Amorphophallus oncophyllus)Blends
17
作者 Toni Dwi Novianto Sri Rahayoe Bakti Berlyanto Sedayu 《Journal of Renewable Materials》 2025年第2期385-400,共16页
This study aimed to develop and characterize biodegradable packaging film from blends of two natural polysaccharides,i.e.,agar and glucomannan.The glucomannan used was derived from the specific tuber plant Amorphophal... This study aimed to develop and characterize biodegradable packaging film from blends of two natural polysaccharides,i.e.,agar and glucomannan.The glucomannan used was derived from the specific tuber plant Amorphophallus oncophyllus(locally known as“porang”),which grows abundantly in Indonesian forests and remains underutilized.Various ratios of agar and porang-glucomannan(PG)proportions were formulated to produce a food packaging film,which was subsequently tested for its mechanical,physical,chemical,and thermal properties.The results showed that the inclusion of PG to the film formulations notably enhanced the stretchability of agar films,achieving maximum a twofold increase,while concurrently reducing their water resistance such as increased water solubility and water swelling for up to 125%and 105%,respectively.The mechanical and thermal properties,as well as the water vapor permeability of the resulting film,were significantly affected by the polymer matrix structure formed by the varying proportions of the two biopolymers.The enhancement of these properties was associated with a more solid/compact film structure,as corroborated by cross-sectional images obtained through SEM analysis.The study’s findings suggest that utilizing agar and porang biomass has significant potential for further development as an environmentally friendly food packaging material. 展开更多
关键词 AGAR Amorphophallus oncophyllus BIODEGRADABLE film GLUCOMANNAN porang
在线阅读 下载PDF
Design and Research of Eco-Friendly Biodegradable Composites Based on Renewable Biopolymer Materials,Reed,and Hemp Waste
18
作者 Artem Kariev Vladimir Lebedev +5 位作者 Denis Miroshnichenko Yevgen Sokol Magomediemin Gasanov Anna Cherkashina Yuriy Lutsenko Serhiy Pyshyev 《Journal of Renewable Materials》 2025年第8期1645-1660,共16页
Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible... Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible part of crops.This forces bioplastics to competewith food production because the crops that produce bioplastics can also be used for human nutrition.That is why the article’s main focus is on creating bioplastics using renewable,non-food raw materials(cellulose,lignin,etc.).Eco-friendly composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)with reed and hemp waste as a filler.The physic-chemical features of the structure and surface,as well as the technological characteristics of reed and hemp waste as the organic fillers for renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid),were studied.Theeffect of the fractional composition analysis,morphology,and nature of reed and hempwaste on the quality of the design of eco-friendly biodegradable composites and their ability to disperse in the matrix of renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch and poly(lactic acid)was carried out.The influence of different content and morphology of reed and hemp waste on the composite characteristics was investigated.It is shown that the most optimal direction for obtaining strong eco-friendly biodegradable composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)is associated with the use of waste reed stalks,with its optimal content at the level of 50 wt.%. 展开更多
关键词 ECO-FRIENDLY BIODEGRADABLE composites renewable biopolymers organic waste REED HEMP
在线阅读 下载PDF
Biodegradation and biocompatibility of calcium phosphate-coated magnesium in eye environment,in vitro and in vivo
19
作者 Yi Chen Yi Lin +8 位作者 Wangdu Luo Huanhuan Gao Yaobo Hu Liying Qiao Jia She Lin Xie Xiangji Li Yong Wang Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第7期3081-3095,共15页
The possible application of magnesium(Mg)in glaucoma surgical treatment has been investigated in our previous work.In this paper,the degradation behavior and biocompatibility of Mg coated with hydroxyapatite(HA)and di... The possible application of magnesium(Mg)in glaucoma surgical treatment has been investigated in our previous work.In this paper,the degradation behavior and biocompatibility of Mg coated with hydroxyapatite(HA)and dicalcium phosphate dihydrate(DCPD)in eye environment were evaluated,and uncoated Mg was used for comparison.It was found that uniform corrosion occurred macroscopically to the coated Mg samples in sodium lactate ringer’s injection(SLRI)as well as in the rabbit eyes.In micro-scale,the corrosion was characterized by local cracking and pitting primarily.Mg and calcium(Ca)were incorporated into the surface corrosion products and a multi-layer structure was formed.Compared to other samples,HA-coated Mg slowed down dramatically the alkalinity of the solution and the ion release of the sample,and exhibited the lowest corrosion rate in SLRI,which was about 0.22 mm/a.In terms of biocompatibility,fibroblasts demonstrated high viability in the HA-coated and DCPD-coated Mg groups(p<0.05)in vitro.In vivo,HA-coated Mg was found to show lower inflammatory response and fibrosis than the other groups did,as indicated by hematoxylin-eosin and immunofluorescence staining.During the degrading process of HA-coated Mg in the rabbits’eyes,no inflammation was found in the anterior chamber,lens,and vitreous body.HA-coated Mg was fully biodegraded fifteen weeks post-operation,and the scleral drainage channel(SDC)was formed without obvious scarring.It is concluded that HA-coated Mg implantation is a promising adjunctive procedure to improve the success rate of trabeculectomy.Statement of significance:Magnesium(Mg)has shown to be a potential biomaterial for ophthalmic implants in our previous work.However,inflammatory response resulted from the low corrosion resistance of Mg is a major concern.It is shown here that Mg coated with different calcium phosphates can improve these properties in varying degrees and keep the scleral drainage channel unobstructed and unscarred.Based on our in vitro and in vivo studies,HA-coated Mg exhibited a better degradation behavior and excellent biocompatibility.The scleral drainage channel still exists and aqueous humor flows out smoothly after the full degradation of the implant.It is concluded that HA-coated Mg is a promising biomaterial to increase the therapeutic efficiency of trabeculectomy for glaucoma. 展开更多
关键词 MAGNESIUM Calcium phosphate coating BIODEGRADATION BIOCOMPATIBILITY GLAUCOMA
暂未订购
Characteristics of Bioplastics Based on Chitosan and Kraft Lignin Derived from Acacia mangium
20
作者 Pelita Ningrum Sri Hidayati +7 位作者 Wahyu Hidayat Samsul Rizal Erika Ayu Agustiany Emma Rochima Lee Seng Hua Antonio Di Martino ApriHeri Iswanto Widya Fatriasari 《Journal of Renewable Materials》 2025年第7期1367-1388,共22页
Biodegradable plastics are types of plastics that can decompose into water and carbon dioxide the actions of living organisms,mostly by bacteria.Generally,biodegradable plastics are obtained from renewable raw materia... Biodegradable plastics are types of plastics that can decompose into water and carbon dioxide the actions of living organisms,mostly by bacteria.Generally,biodegradable plastics are obtained from renewable raw materials,microorganisms,petrochemicals,or a combination of all three.This study aims to develop an innovative bioplastic by combining chitosan and lignin.Bioplastic was prepared by casting method and characterized by measuring the mechanical properties like tensile strength,Young’smodulus,and elongation at break.The chemical structure,together with the interactions among chitosan and lignin and the presence of new chemical bonds,were evaluated by FTIR,while the thermal properties were assessed by thermogravimetric analysis.The water vapor permeability,tests and transparency as well as biodegradability,were also carried out.The results show a tensile strength value of 34.82 MPa,Young’s modulus of 18.54 MPa,and elongation at a break of 2.74%.Moreover,the interaction between chitosan and lignin affects the intensity of the absorption peak,leading to reduced transparency and increased thermal stability.The chitosan/lignin interactions also influence the crystalline size,making it easier to degrade andmore flexible rather than rigid.The contact angle shows the bioplastic’s ability to resist water absorption for 4minutes.In the biodegradation test,the sample began to degrade after 30 days of soil burial test observation. 展开更多
关键词 Bioplastic CHITOSAN LIGNIN acetic acid BIODEGRADABLE organic acid active properties
在线阅读 下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部