The positive definiteness of elasticity tensors plays an important role in the elasticity theory.In this paper,we consider the bi-block symmetric tensors,which contain elasticity tensors as a subclass.First,we define ...The positive definiteness of elasticity tensors plays an important role in the elasticity theory.In this paper,we consider the bi-block symmetric tensors,which contain elasticity tensors as a subclass.First,we define the bi-block M-eigenvalue of a bi-block symmetric tensor,and show that a bi-block symmetric tensor is bi-block positive(semi)definite if and only if its smallest bi-block M-eigenvalue is(nonnegative)positive.Then,we discuss the distribution of bi-block M-eigenvalues,by which we get a sufficient condition for judging bi-block positive(semi)definiteness of the bi-block symmetric tensor involved.Particularly,we show that several classes of bi-block symmetric tensors are bi-block positive definite or bi-block positive semidefinite,including bi-block(strictly)diagonally dominant symmetric tensors and bi-block symmetric(B)B0-tensors.These give easily checkable sufficient conditions for judging bi-block positive(semi)definiteness of a bi-block symmetric tensor.As a byproduct,we also obtain two easily checkable sufficient conditions for the strong ellipticity of elasticity tensors.展开更多
基金The first author’s work was supported by the National Natural Science Foundation of China(Grant No.11871051).
文摘The positive definiteness of elasticity tensors plays an important role in the elasticity theory.In this paper,we consider the bi-block symmetric tensors,which contain elasticity tensors as a subclass.First,we define the bi-block M-eigenvalue of a bi-block symmetric tensor,and show that a bi-block symmetric tensor is bi-block positive(semi)definite if and only if its smallest bi-block M-eigenvalue is(nonnegative)positive.Then,we discuss the distribution of bi-block M-eigenvalues,by which we get a sufficient condition for judging bi-block positive(semi)definiteness of the bi-block symmetric tensor involved.Particularly,we show that several classes of bi-block symmetric tensors are bi-block positive definite or bi-block positive semidefinite,including bi-block(strictly)diagonally dominant symmetric tensors and bi-block symmetric(B)B0-tensors.These give easily checkable sufficient conditions for judging bi-block positive(semi)definiteness of a bi-block symmetric tensor.As a byproduct,we also obtain two easily checkable sufficient conditions for the strong ellipticity of elasticity tensors.
基金浙江省“尖兵”“领雁”研发攻关计划(2024C01058)浙江省“十四五”第二批本科省级教学改革备案项目(JGBA2024014)+2 种基金2025年01月批次教育部产学合作协同育人项目(2501270945)2024年度浙江大学本科“AI赋能”示范课程建设项目(24)浙江大学第一批AI For Education系列实证教学研究项目(202402)。