We prove that a Finsler manifold with vanishing Berwald scalar curvature has zero E-curvature.As a consequence,Landsberg manifolds with vanishing Berwald scalar curvature are Berwald manifolds.For(α,β)-metrics on ma...We prove that a Finsler manifold with vanishing Berwald scalar curvature has zero E-curvature.As a consequence,Landsberg manifolds with vanishing Berwald scalar curvature are Berwald manifolds.For(α,β)-metrics on manifold of dimension greater than 2,if the mean Landsberg curvature and the Berwald scalar curvature both vanish,then the Berwald curvature also vanishes.展开更多
In this paper, we study the (α,β)-metrics of scalar flag curvature in the form of F = α + εβ + κβ^2/α (ε and k ≠ 0 are constants) and F = α^2/α-β. We prove that these two kinds of metrics are weak...In this paper, we study the (α,β)-metrics of scalar flag curvature in the form of F = α + εβ + κβ^2/α (ε and k ≠ 0 are constants) and F = α^2/α-β. We prove that these two kinds of metrics are weak Berwaldian if and only if they are Berwaldian and their flag curvatures vanish. In this case, the metrics are locally Minkowskian.展开更多
In this paper, we study an important class of (α,β)-metrics in the form F = (α + β)m+1/αm on an n-dimensional manifold and get the conditions for such metrics to be weakly-Berwald metrics, where α = aij(x)yiyj i...In this paper, we study an important class of (α,β)-metrics in the form F = (α + β)m+1/αm on an n-dimensional manifold and get the conditions for such metrics to be weakly-Berwald metrics, where α = aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form and m is a real number with m = 1,0,1/n. Furthermore, we also prove that this kind of (α,β)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature. In this case, S-curvature vanishes and the metric is weakly-Berwald metric.展开更多
Isotropic Berwald metrics are as a generalization of Berwald metrics. Shen proved that every Berwald metric is of vanishing S-curvature. In this paper, we generalize this fact and prove that every isotropic Berwald me...Isotropic Berwald metrics are as a generalization of Berwald metrics. Shen proved that every Berwald metric is of vanishing S-curvature. In this paper, we generalize this fact and prove that every isotropic Berwald metric is of isotropic S-curvature. Let F = α + β be a Randers metric of isotropic Berwald curvature. Then it corresponds to a conformal vector field through navigation representation.展开更多
In this paper, the authors construct a class of unitary invariant strongly pseudoconvex complex Finsler metrics which are of the form F =√[ rf(s- t)[, where r = ||v||~ 2, s =| z,v |~2/r, t =|| z||~ 2, f(w) is a real-...In this paper, the authors construct a class of unitary invariant strongly pseudoconvex complex Finsler metrics which are of the form F =√[ rf(s- t)[, where r = ||v||~ 2, s =| z,v |~2/r, t =|| z||~ 2, f(w) is a real-valued smooth positive function of w ∈ R,and z is in a unitary invariant domain M C^n. Complex Finsler metrics of this form are unitary invariant. We prove that F is a class of weakly complex Berwald metrics whose holomorphic curvature and Ricci scalar curvature vanish identically and are independent of the choice of the function f. Under initial value conditions on f and its derivative f, we prove that all the real geodesics of F =√[rf(s- t)] on every Euclidean sphere S^(2n-1) M are great circles.展开更多
Under the assumption that' is a strongly convex weakly Khler Finsler metric on a complex manifold M, we prove that F is a weakly complex Berwald metric if and only if F is a real Landsberg metric.This result toget...Under the assumption that' is a strongly convex weakly Khler Finsler metric on a complex manifold M, we prove that F is a weakly complex Berwald metric if and only if F is a real Landsberg metric.This result together with Zhong(2011) implies that among the strongly convex weakly Kahler Finsler metrics there does not exist unicorn metric in the sense of Bao(2007). We also give an explicit example of strongly convex Kahler Finsler metric which is simultaneously a complex Berwald metric, a complex Landsberg metric,a real Berwald metric, and a real Landsberg metric.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos.11871126,11501067,11571184).
文摘We prove that a Finsler manifold with vanishing Berwald scalar curvature has zero E-curvature.As a consequence,Landsberg manifolds with vanishing Berwald scalar curvature are Berwald manifolds.For(α,β)-metrics on manifold of dimension greater than 2,if the mean Landsberg curvature and the Berwald scalar curvature both vanish,then the Berwald curvature also vanishes.
基金the National Natural Science Foundation of China(No.10671214)the Science Foundation of Chongqing Education Committee(No.KJ080620)
文摘In this paper, we study the (α,β)-metrics of scalar flag curvature in the form of F = α + εβ + κβ^2/α (ε and k ≠ 0 are constants) and F = α^2/α-β. We prove that these two kinds of metrics are weak Berwaldian if and only if they are Berwaldian and their flag curvatures vanish. In this case, the metrics are locally Minkowskian.
基金the National Natural Science Foundation of China (No. 10671214) the Natural Science Foundation of Chongqing Education Committee (No. KJ080620) the Science Foundation of Chongqing University of Arts and Sciences (No. Z2008SJ14).
文摘In this paper, we study an important class of (α,β)-metrics in the form F = (α + β)m+1/αm on an n-dimensional manifold and get the conditions for such metrics to be weakly-Berwald metrics, where α = aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form and m is a real number with m = 1,0,1/n. Furthermore, we also prove that this kind of (α,β)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature. In this case, S-curvature vanishes and the metric is weakly-Berwald metric.
文摘Isotropic Berwald metrics are as a generalization of Berwald metrics. Shen proved that every Berwald metric is of vanishing S-curvature. In this paper, we generalize this fact and prove that every isotropic Berwald metric is of isotropic S-curvature. Let F = α + β be a Randers metric of isotropic Berwald curvature. Then it corresponds to a conformal vector field through navigation representation.
基金supported by the National Natural Science Foundation of China(Nos.11271304,11171277)the Program for New Century Excellent Talents in University(No.NCET-13-0510)+1 种基金the Fujian Province Natural Science Funds for Distinguished Young Scholars(No.2013J06001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘In this paper, the authors construct a class of unitary invariant strongly pseudoconvex complex Finsler metrics which are of the form F =√[ rf(s- t)[, where r = ||v||~ 2, s =| z,v |~2/r, t =|| z||~ 2, f(w) is a real-valued smooth positive function of w ∈ R,and z is in a unitary invariant domain M C^n. Complex Finsler metrics of this form are unitary invariant. We prove that F is a class of weakly complex Berwald metrics whose holomorphic curvature and Ricci scalar curvature vanish identically and are independent of the choice of the function f. Under initial value conditions on f and its derivative f, we prove that all the real geodesics of F =√[rf(s- t)] on every Euclidean sphere S^(2n-1) M are great circles.
基金supported by Program for New Century Excellent Talents in University (Grant No. NCET-13-0510)National Natural Science Foundation of China(Grant Nos. 11271304,10971170, 11171277,11571288,11461064 and 11671330)+1 种基金the Fujian Province Natural Science Funds for Distinguished Young Scholar (Grant No.2013J06001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Under the assumption that' is a strongly convex weakly Khler Finsler metric on a complex manifold M, we prove that F is a weakly complex Berwald metric if and only if F is a real Landsberg metric.This result together with Zhong(2011) implies that among the strongly convex weakly Kahler Finsler metrics there does not exist unicorn metric in the sense of Bao(2007). We also give an explicit example of strongly convex Kahler Finsler metric which is simultaneously a complex Berwald metric, a complex Landsberg metric,a real Berwald metric, and a real Landsberg metric.