期刊文献+
共找到1,213篇文章
< 1 2 61 >
每页显示 20 50 100
Bayesian network-based survival prediction model for patients having undergone post-transjugular intrahepatic portosystemic shunt for portal hypertension 被引量:1
1
作者 Rong Chen Ling Luo +3 位作者 Yun-Zhi Zhang Zhen Liu An-Lin Liu Yi-Wen Zhang 《World Journal of Gastroenterology》 SCIE CAS 2024年第13期1859-1870,共12页
BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managi... BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managing PHT,it carries risks like hepatic encephalopathy,thus affecting patient survival prognosis.To our knowledge,existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes.Consequently,the development of an innovative modeling approach is essential to address this limitation.AIM To develop and validate a Bayesian network(BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.METHODS The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed.Variables were selected using Cox and least absolute shrinkage and selection operator regression methods,and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.RESULTS Variable selection revealed the following as key factors impacting survival:age,ascites,hypertension,indications for TIPS,postoperative portal vein pressure(post-PVP),aspartate aminotransferase,alkaline phosphatase,total bilirubin,prealbumin,the Child-Pugh grade,and the model for end-stage liver disease(MELD)score.Based on the above-mentioned variables,a BN-based 2-year survival prognostic prediction model was constructed,which identified the following factors to be directly linked to the survival time:age,ascites,indications for TIPS,concurrent hypertension,post-PVP,the Child-Pugh grade,and the MELD score.The Bayesian information criterion was 3589.04,and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16.The model’s accuracy,precision,recall,and F1 score were 0.90,0.92,0.97,and 0.95 respectively,with the area under the receiver operating characteristic curve being 0.72.CONCLUSION This study successfully developed a BN-based survival prediction model with good predictive capabilities.It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT. 展开更多
关键词 bayesian network CIRRHOSIS Portal hypertension Transjugular intrahepatic portosystemic shunt Survival prediction model
暂未订购
A method for modeling and evaluating the interoperability of multi-agent systems based on hierarchical weighted networks
2
作者 DONG Jingwei TANG Wei YU Minggang 《Journal of Systems Engineering and Electronics》 2025年第3期754-767,共14页
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight... Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies. 展开更多
关键词 complex network agent INTEROPERABILITY susceptible-infected-recovered model dynamic bayesian network
在线阅读 下载PDF
Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images
3
作者 Anandhavalli Muniasamy Ashwag Alasmari 《Computer Modeling in Engineering & Sciences》 2025年第4期569-592,共24页
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has signifi... The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation. 展开更多
关键词 bayesian neural networks(bnNs) convolution neural networks(CNN) bayesian convolution neural networks(BCNNs) predictive modeling precision medicine uncertainty quantification
在线阅读 下载PDF
Meteorological and traffic effects on air pollutants using Bayesian networks and deep learning
4
作者 Yuan-Chien Lin Yu-Ting Lin +1 位作者 Cai-Rou Chen Chun-Yeh Lai 《Journal of Environmental Sciences》 2025年第6期54-70,共17页
Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air qual... Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air quality prediction models.Using real-world air pollutant data from Taipei City,this study integrates diverse factors,including traffic flow,speed,rainfall patterns,andmeteorological factors.We constructed a Bayesian network probabilitymodel based on rainfall events as a big data analysis framework to investigate understand traffic factor causality relationships and condition probabilities for meteorological factors and air pollutant concentrations.Generalized Additive Model(GAM)verified non-linear relationships between traffic factors and air pollutants.Consequently,we propose a long short term memory(LSTM)model to predict airborne pollutant concentrations.This study propose a new approach of air pollutants and meteorological variable analysis procedure by considering both rainfall amount and patterns.Results indicate improved air quality when controlling vehicle speed above 40 km/h and maintaining an average vehicle flow<1200 vehicles per hour.This study also classified rainfall events into four types depending on its characteristic.Wet deposition from varied rainfall types significantly affects air quality,with TypeⅠrainfall events(long-duration heavy rain)having the most pronounced impact.An LSTM model incorporating GAM and Bayesian network outcomes yields excellent performance,achieving correlation R^(2)>0.9 and 0.8 for first and second order air pollutants,i.e.,CO,NO,NO_(2),and NO_(x);and O_(3),PM_(10),and PM_(2.5),respectively. 展开更多
关键词 Air quality Rainfall pattern Traffic emissions Generalized additive model bayesian networks LSTM model
原文传递
A Design of Predictive Intelligent Networks for the Analysis of Fractional Model of TB-Virus
5
作者 Muhammad Asif Zahoor Raja Aqsa Zafar Abbasi +2 位作者 Kottakkaran Sooppy Nisar Ayesha Rafiq Muhammad Shoaib 《Computer Modeling in Engineering & Sciences》 2025年第5期2133-2153,共21页
Being a nonlinear operator,fractional derivatives can affect the enforcement of existence at any given time.As a result,the memory effect has an impact on all nonlinear processes modeled by fractional order differenti... Being a nonlinear operator,fractional derivatives can affect the enforcement of existence at any given time.As a result,the memory effect has an impact on all nonlinear processes modeled by fractional order differential equations(FODEs).The goal of this study is to increase the fractional model of the TB virus’s(FMTBV)accuracy.Stochastic solvers have never been used to solve FMTBV previously.The Bayesian regularized artificial(BRA)method and neural networks(NNs),often referred to as BRA-NNs,were used to solve the FMTBV model.Each scenario features five occurrences that each reflect a different order of derivatives,ranging from 0.8,0.85,0.9,0.95,and 1,as well as five potential rates for different parameters.Training data made up 90%of the data,testing data made up 5%,and validation data made up 5%of the data used to illustrate the FMTBV’s approximations.To verify that the BRA-NNs were correct,the generated simulations were described in the following solutions using the FOLotkaVolterra approach in MATLAB.Comprehensive Simulink results in terms of mean square error,error histogram,and regression analysis investigations further highlight the competence,dependability,and accuracy of the suggested BRA-NNs. 展开更多
关键词 Fractional model of TB-Virus(FMTBV) artificial neural network bayesian regularization
在线阅读 下载PDF
Building Bayesian Network(BN)-Based System Reliability Model by Dual Genetic Algorithm(DGA)
6
作者 游威振 钟小品 《Journal of Donghua University(English Edition)》 EI CAS 2015年第6期914-918,共5页
A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In con... A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples. 展开更多
关键词 bayesian network(bn)model dual genetic algorithm(DGA) system reliability historical data
在线阅读 下载PDF
基于SNA-BN的三峡船闸预约调度模式社会风险评估
7
作者 李嵘 刘清 +3 位作者 王磊 钟悦 兰毓峰 南航 《中国安全科学学报》 北大核心 2025年第8期148-155,共8页
为提升三峡船闸智能化水平及风险承载能力,首先,采用社会网络分析(SNA)方法识别并提取三峡船闸预约调度的利益相关方,通过点度中心度、中介中心度和接近中心度这3种中心性指标表征利益相关方的网络特征,并从合法性、合理性、可行性、可... 为提升三峡船闸智能化水平及风险承载能力,首先,采用社会网络分析(SNA)方法识别并提取三峡船闸预约调度的利益相关方,通过点度中心度、中介中心度和接近中心度这3种中心性指标表征利益相关方的网络特征,并从合法性、合理性、可行性、可控性4个维度构建评价指标体系;其次,根据指标间的潜在耦合关系,运用贝叶斯网络(BN)构建三峡船闸预约调度模式社会风险评估模型,以量化各指标作用的方向与强度;最后,通过敏感性分析识别影响社会稳定性的关键因素。结果表明:三峡船闸预约调度模式下的社会风险等级处于较低水平;评价指标体系中的4个准则指标对综合社会风险的影响强度排序为:合法性>可控性>可行性>合理性;规则修订、审批及发布的合规性,负面舆论易发性,群体性事件易发性,预约成功率,安全管理策略覆盖度等指标是影响总体社会风险的关键因素。 展开更多
关键词 社会网络分析(SNA) 贝叶斯网络(bn) 三峡船闸 预约调度 社会风险评估 利益相关方
原文传递
基于BT-BN的无人机运行安全风险分析
8
作者 齐福强 张晓阳 +2 位作者 陈姝宁 孟明源 朱峰 《科学技术与工程》 北大核心 2025年第20期8745-8752,共8页
为有效评估并控制无人机(unmanned aerial vehicle, UAV)运行风险,在总结无人机地面撞击各种风险因素的基础上,分析无人机地面撞击可能的发生原因,确定相应的控制措施,建立风险分析与控制技术相结合的安全屏障模型,可清晰地显示无人机... 为有效评估并控制无人机(unmanned aerial vehicle, UAV)运行风险,在总结无人机地面撞击各种风险因素的基础上,分析无人机地面撞击可能的发生原因,确定相应的控制措施,建立风险分析与控制技术相结合的安全屏障模型,可清晰地显示无人机运行安全致因、缓解措施以及事故后果之间的逻辑关系;进一步将蝴蝶结(bow-tie, BT)模型映射到贝叶斯网络(Bayesian network, BN),量化BT模型中各要素,计算不安全事件发生的概率。结果表明:该模型能够清晰地展现风险控制过程并有效降低无人机运行风险,为无人机运行风险评估与控制提供了一种高效、实用的方法。 展开更多
关键词 无人机(UAV) 运行风险 蝴蝶结(BT)模型 贝叶斯网络(bn) 风险控制
在线阅读 下载PDF
融合LDA-BN的船舶碰撞事故致因分析
9
作者 邵波 刘巧 +2 位作者 柯善钢 郑霞忠 贺语琴 《安全与环境学报》 北大核心 2025年第1期157-164,共8页
为探究船舶碰撞事故致因及其关系,提升航运安全管理水平,研究提出融合狄利克雷分布(Latent Dirichlet allocation,LDA)与贝叶斯网络(Bayesian Network,BN)的船舶碰撞事故致因分析方法。首先,运用LDA主题模型挖掘361份船舶碰撞事故调查报... 为探究船舶碰撞事故致因及其关系,提升航运安全管理水平,研究提出融合狄利克雷分布(Latent Dirichlet allocation,LDA)与贝叶斯网络(Bayesian Network,BN)的船舶碰撞事故致因分析方法。首先,运用LDA主题模型挖掘361份船舶碰撞事故调查报告,提取27个事故致因主题;其次,利用事故树方法厘清调查报告中致因间的影响关系,构建事故致因贝叶斯网络结构,使用期望最大化算法进行贝叶斯网络参数学习,确定各节点的条件概率,构建事故致因贝叶斯网络模型;最后,通过逆向推理分析、最大致因链分析及敏感性分析,找出导致船舶碰撞事故发生的主要致因因素。结果显示:安全管理不到位、疏忽瞭望、事发水域通航环境复杂是引发船舶碰撞事故可能性大的致因,航线保持不当、应急处置不当、违规穿越锚地是导致船舶碰撞事故发生的最敏感致因因素。 展开更多
关键词 安全社会工程 船舶碰撞 狄利克雷分布主题模型 贝叶斯网络 事故致因
原文传递
融合N-K-DBN模型的船舶自沉事故风险因素动态耦合分析
10
作者 崔秀芳 曾杰熙 +1 位作者 邵志鹏 安楠楠 《安全与环境学报》 北大核心 2025年第6期2080-2091,共12页
我国海上事故频发,当多个风险因素动态耦合时易超系统阈值导致船舶自沉事故,造成人员伤亡、经济损失和环境危害。因此,有必要定量分析影响船舶自沉风险演化特征之间的动态耦合关系,以识别造成事故的关键因素。采用N-K模型和动态贝叶斯网... 我国海上事故频发,当多个风险因素动态耦合时易超系统阈值导致船舶自沉事故,造成人员伤亡、经济损失和环境危害。因此,有必要定量分析影响船舶自沉风险演化特征之间的动态耦合关系,以识别造成事故的关键因素。采用N-K模型和动态贝叶斯网络(Dynamic Bayesian Network, DBN)研究船舶自沉风险因素的动态耦合特性,通过文本挖掘技术分析中国海事局(CMSA)公布的146起船舶自沉事故报告,对风险因素进行分类并探究其耦合机制。首先,利用N-K模型量化各风险因素间的耦合度和关系;然后,利用贝叶斯网络(BN)模型在N-K模型基础上进一步量化和优化了耦合风险,减少其主观性;最后,在BN结构上加入时间序列建立N-K-DBN风险动态耦合模型,通过风险概率分析、敏感性分析、正向推理、反向诊断和不确定性分析等,确定影响动态风险关联性的关键因素及催化因素,实现对航行中耦合风险的动态控制,并提出风险管理策略和防范措施,以提升海上安全。结果表明:船舶自沉事故的发生与耦合值呈正相关,耦合因素越多风险值越高,耦合相互作用越强。事故初期,人为因素和管理因素是船舶自沉事件的关键致因,其交叉耦合时风险更为显著。随着时间推移,船舶因素对事故的影响逐渐提高,更易与人为因素发生交叉耦合导致动态风险增强,而恶劣气象是触发船舶与其他因素耦合的催化因素,易诱发多因素的交叉耦合风险,导致事故发生概率增大。通过研究识别出安全意识淡薄、公司管理不到位、船舶故障、船舶不适航、船舶管理不当和公司未履责等是引发自沉事故的关键动态风险耦合因素,以及恶劣气象这一重要的动态风险耦合催化因素,这些因素须受到高度重视并对它们采取相应防范措施。 展开更多
关键词 安全工程 船舶自沉事故 N-K模型 动态贝叶斯网络 风险动态耦合分析
原文传递
基于改进DEMATEL-ISM-BN的人因视角下煤矿事故致因研究 被引量:2
11
作者 赵天亮 王冰山 +7 位作者 台发强 姜琦 王永杰 代宗 常金鹏 马晟翔 傅贵 姜伟 《安全与环境工程》 北大核心 2025年第1期91-99,117,共10页
为深入探究人因视角下煤矿事故致因因素之间的相互作用关系和作用路径,找到关键影响因素,通过文献研究、资料收集和现场调研等方法,结合人因分析和分类系统(HFACS)模型理论,构建了包含规章制度完善和实施水平、安全培训水平和安全投入... 为深入探究人因视角下煤矿事故致因因素之间的相互作用关系和作用路径,找到关键影响因素,通过文献研究、资料收集和现场调研等方法,结合人因分析和分类系统(HFACS)模型理论,构建了包含规章制度完善和实施水平、安全培训水平和安全投入水平等14项指标的人因视角下煤矿事故影响因素体系,并运用基于灰色理论(Grey theory)和贝叶斯网络(BN)的决策试验与评价实验室法与解释结构模型(DEMATEL-ISM)对影响因素进行了分析,得到了各影响因素的关键程度、层次关系、作用路径和人因视角下煤矿事故最大致因链路径。结果表明:首先,利用Grey-DEMATEL法研究分析各影响因素中心度与原因度,识别出安全培训水平、员工安全意识水平、员工知识技能水平、员工安全心理水平等主要影响因素;然后,利用ISM法划分影响因素间的层次关系,得到安全文化水平是本质影响因素,规章制度完善和实施水平、安全投入水平、纠正问题水平等11个因素是过渡影响因素,违章指挥、违规作业是表层影响因素;最后,运用构建的BN模型反向诊断推理得到最大致因路径。研究结果可为人因视角下煤矿事故预防研究提供理论依据和决策支撑。 展开更多
关键词 煤矿事故 人因分析 灰色理论 决策试验与评价实验室法(DEMATEL) 解释结构模型(ISM) 贝叶斯网络(bn)
在线阅读 下载PDF
基于FTA-BN模型的多旋翼无人机事故致因分析
12
作者 岳仁田 韩磊 《中国民航大学学报》 2025年第4期91-96,共6页
对多旋翼无人机(UAV,unmanned aerial vehicle)事故致因进行分析,有助于实现多旋翼无人机事故的科学防控。本文调查了382起多旋翼无人机事故案例,建立故障树分析-贝叶斯网络(FTA-BN,fault tree analysis-Bayesian network)模型对多旋翼... 对多旋翼无人机(UAV,unmanned aerial vehicle)事故致因进行分析,有助于实现多旋翼无人机事故的科学防控。本文调查了382起多旋翼无人机事故案例,建立故障树分析-贝叶斯网络(FTA-BN,fault tree analysis-Bayesian network)模型对多旋翼无人机事故成因进行分析。首先,建立以多旋翼无人机事故为顶事件,多旋翼无人机空中撞毁、坠毁、失联为中间事件,事故致因事件为基本事件的故障树模型;其次,根据故障树模型与贝叶斯网络的对应关系将故障树模型转化为贝叶斯网络模型;最后,用Netica软件对贝叶斯网络模型进行后验概率推理和敏感性分析,得出主要的事故致因因素。结果表明,该组合模型不仅能使无人机事故致因的推断变得容易操作,且能得到更可靠的推论。 展开更多
关键词 多旋翼无人机事故 致因分析 故障树分析(FTA) 贝叶斯网络(bn)
在线阅读 下载PDF
Estimating survival benefit of adjuvant therapy based on a Bayesian network prediction model in curatively resected advanced gallbladder adenocarcinoma 被引量:11
13
作者 Zhi-Min Geng Zhi-Qiang Cai +9 位作者 Zhen Zhang Zhao-Hui Tang Feng Xue Chen Chen Dong Zhang Qi Li Rui Zhang Wen-Zhi Li Lin Wang Shu-Bin Si 《World Journal of Gastroenterology》 SCIE CAS 2019年第37期5655-5666,共12页
BACKGROUND The factors affecting the prognosis and role of adjuvant therapy in advanced gallbladder carcinoma(GBC)after curative resection remain unclear.AIM To provide a survival prediction model to patients with GBC... BACKGROUND The factors affecting the prognosis and role of adjuvant therapy in advanced gallbladder carcinoma(GBC)after curative resection remain unclear.AIM To provide a survival prediction model to patients with GBC as well as to identify the role of adjuvant therapy.METHODS Patients with curatively resected advanced gallbladder adenocarcinoma(T3 and T4)were selected from the Surveillance,Epidemiology,and End Results database between 2004 and 2015.A survival prediction model based on Bayesian network(BN)was constructed using the tree-augmented na?ve Bayes algorithm,and composite importance measures were applied to rank the influence of factors on survival.The dataset was divided into a training dataset to establish the BN model and a testing dataset to test the model randomly at a ratio of 7:3.The confusion matrix and receiver operating characteristic curve were used to evaluate the model accuracy.RESULTS A total of 818 patients met the inclusion criteria.The median survival time was 9.0 mo.The accuracy of BN model was 69.67%,and the area under the curve value for the testing dataset was 77.72%.Adjuvant radiation,adjuvant chemotherapy(CTx),T stage,scope of regional lymph node surgery,and radiation sequence were ranked as the top five prognostic factors.A survival prediction table was established based on T stage,N stage,adjuvant radiotherapy(XRT),and CTx.The distribution of the survival time(>9.0 mo)was affected by different treatments with the order of adjuvant chemoradiotherapy(cXRT)>adjuvant radiation>adjuvant chemotherapy>surgery alone.For patients with node-positive disease,the larger benefit predicted by the model is adjuvant chemoradiotherapy.The survival analysis showed that there was a significant difference among the different adjuvant therapy groups(log rank,surgery alone vs CTx,P<0.001;surgery alone vs XRT,P=0.014;surgery alone vs cXRT,P<0.001).CONCLUSION The BN-based survival prediction model can be used as a decision-making support tool for advanced GBC patients.Adjuvant chemoradiotherapy is expected to improve the survival significantly for patients with node-positive disease. 展开更多
关键词 GALLBLADDER CARCINOMA bayesian network Surgery ADJUVANT therapy Prediction model
暂未订购
Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake 被引量:5
14
作者 XU Min ZENG Guang-ming +3 位作者 XU Xin-yi HUANG Guo-he SUN Wei JIANG Xiao-yun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期946-952,共7页
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t... Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake. 展开更多
关键词 Dongting Lake CHLOROPHYLL-A bayesian regularized BP neural network model sum of square weights
在线阅读 下载PDF
Bayesian networks modeling for thermal error of numerical control machine tools 被引量:7
15
作者 Xin-hua YAO Jian-zhong FU Zi-chen CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第11期1524-1530,共7页
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also... The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy. 展开更多
关键词 bayesian networks(bns) Thermal error model Numerical control(NC)machine tool
在线阅读 下载PDF
Reliability Modeling and Evaluation of Complex Multi-State System Based on Bayesian Networks Considering Fuzzy Dynamic of Faults 被引量:4
16
作者 Fangjun Zuo Meiwei Jia +2 位作者 Guang Wen Huijie Zhang Pingping Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期993-1012,共20页
In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditiona... In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditional Bayesian network reliability evaluation methods,this paper proposes a Bayesian network reliability evaluation method considering dynamics and fuzziness.The fuzzy theory and the dynamic of component failure probability are introduced to construct the dynamic fuzzy set function.Based on the solving characteristics of the dynamic fuzzy set and Bayesian network,the fuzzy dynamic probability and fuzzy dynamic importance degree of the fault state of leaf nodes are solved.Finally,through the dynamic fuzzy reliability analysis of CNC machine tool hydraulic system balance circuit,the application of this method in system reliability evaluation is verified,which provides support for fault diagnosis of CNC machine tools. 展开更多
关键词 bayesian network(bn) dynamics FUZZY MULTI-STATE
在线阅读 下载PDF
Winning Probability Estimation Based on Improved Bradley-Terry Model and Bayesian Network for Aircraft Carrier Battle 被引量:1
17
作者 Yuhui Wang Wei Wang Qingxian Wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第2期39-44,共6页
To provide a decision-making aid for aircraft carrier battle,the winning probability estimation based on Bradley-Terry model and Bayesian network is presented. Firstly,the armed forces units of aircraft carrier are cl... To provide a decision-making aid for aircraft carrier battle,the winning probability estimation based on Bradley-Terry model and Bayesian network is presented. Firstly,the armed forces units of aircraft carrier are classified into three types,which are aircraft,ship and submarine. Then,the attack ability value and defense ability value for each type of armed forces are estimated by using BP neural network,whose training results of sample data are consistent with the estimation results. Next,compared the assessment values through an improved Bradley-Terry model and constructed a Bayesian network to do the global assessment,the winning probabilities of both combat sides are obtained. Finally,the winning probability estimation for a navy battle is given to illustrate the validity of the proposed scheme. 展开更多
关键词 aircraft carrier battle BP neural network Bradley-Terry model bayesian networks
在线阅读 下载PDF
Bayesian network structure learning by dynamic programming algorithm based on node block sequence constraints
18
作者 Chuchao He Ruohai Di +1 位作者 Bo Li Evgeny Neretin 《CAAI Transactions on Intelligence Technology》 2024年第6期1605-1622,共18页
The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study propose... The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study proposes a DP algorithm based on node block sequence constraints.The proposed algorithm constrains the traversal process of the parent graph by using the M-sequence matrix to considerably reduce the time consumption and space complexity by pruning the traversal process of the order graph using the node block sequence.Experimental results show that compared with existing DP algorithms,the proposed algorithm can obtain learning results more efficiently with less than 1%loss of accuracy,and can be used for learning larger-scale networks. 展开更多
关键词 bayesian network(bn) dynamic programming(DP) node block sequence strongly connected component(SCC) structure learning
在线阅读 下载PDF
Linking Structural Equation Modeling with Bayesian Network and Its Application to Coastal Phytoplankton Dynamics in the Bohai Bay
19
作者 XU Xiao-fu SUN Jian +2 位作者 NIE Hong-tao YUAN De-kui TAO Jian-hua 《China Ocean Engineering》 SCIE EI CSCD 2016年第5期733-748,共16页
Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate e... Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay. 展开更多
关键词 structural equation modeling bayesian networks ecological modeling Bohai Bay phytoplankton dynamics
在线阅读 下载PDF
Research on Bayesian Network Based User's Interest Model
20
作者 ZHANG Weifeng XU Baowen +1 位作者 CUI Zifeng XU Lei 《Wuhan University Journal of Natural Sciences》 CAS 2007年第5期809-813,共5页
It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing ... It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing users' interest models and some basic questions of users' interest (representation, derivation and identification of users' interest), a Bayesian network based users' interest model is given. In this model, the users' interest reduction algorithm based on Markov Blanket model is used to reduce the interest noise, and then users' interested and not interested documents are used to train the Bayesian network. Compared to the simple model, this model has the following advantages like small space requirements, simple reasoning method and high recognition rate. The experiment result shows this model can more appropriately reflect the user's interest, and has higher performance and good usability. 展开更多
关键词 bayesian network interest model feature selection
在线阅读 下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部