The valence band offsets of the strained and longitudinally relaxed diamond/cubic boron-nitride (c-BN) (110) superlattice are investigated by the plane wave density functional theory approach and using the on-site...The valence band offsets of the strained and longitudinally relaxed diamond/cubic boron-nitride (c-BN) (110) superlattice are investigated by the plane wave density functional theory approach and using the on-site core electron as a reference energy level. For the strained diamond/c-BN superlattice, the valence band offset of around 1.50 eV is in good agreement with those using all the electrons methods. As for the longitudinally relaxed superlattice, the valence band offset of around 1.28 eV is smaller than that of the strained superlattice. The reason for this is mainly due to the split of the valence band maximum caused by the anisotropic strain.展开更多
Cd1-xZnxS/Cu2ZnSnS4 (CZTS)-based thin film solar cells usually use CdS as a buffer layer, but due to its smaller band gap (2.4 eV), CdS film has been replaced with higher band gap materials. The cadmium zinc sulfi...Cd1-xZnxS/Cu2ZnSnS4 (CZTS)-based thin film solar cells usually use CdS as a buffer layer, but due to its smaller band gap (2.4 eV), CdS film has been replaced with higher band gap materials. The cadmium zinc sulfide (CdZnS) ternary compound has a higher band gap than other compounds, which leads to a decrease in window absorption loss. In this paper, the band offsets at Cd1-xZnxS/CuzZnSnS4 (CZTS) heterointerface are calculated by the first-principles, density- functional and pseudopotential method. The band offsets at Cdl xZnxS/CZTS heterointerface are tuned by controlling the composition of Zn in Cd1-xZnxS alloy, the calculated valence band offsets are small, which is consistent with the commonanion rule. The favorable heterointerface of type-I with a moderate barrier height (〈 0.3 eV) can be obtained by controlling the composition of Zn in Cdl-xZnxS alloy between 0.25 and 0.375.展开更多
Band offset in semiconductors is a fundamental physical quantity that determines the performance of optoelectronic devices.However,the current method of calculating band offset is difficult to apply directly to the la...Band offset in semiconductors is a fundamental physical quantity that determines the performance of optoelectronic devices.However,the current method of calculating band offset is difficult to apply directly to the large-lattice-mismatched and heterovalent semiconductors because of the existing electric field and large strain at the interfaces.Here,we proposed a modified method to calculate band offsets for such systems,in which the core energy level shifts caused by heterovalent effects and lattice mismatch are estimated by interface reconstruction and the insertion of unidirectional strain structures as transitions,respectively.Taking the Si and III-V systems as examples,the results have the same accuracy as what is a widely used method for small-lattice-mismatched systems,and are much closer to the experimental values for the large-lattice-mismatched and heterovalent systems.Furthermore,by systematically studying the heterojunctions of Si and III-V semiconductors along different directions,it is found that the band offsets of Si/InAs and Si/InSb systems in[100],[110]and[111]directions belong to the type I,and could be beneficial for silicon-based luminescence performance.Our study offers a more reliable and direct method for calculating band offsets of large-lattice-mismatched and heterovalent semiconductors,and could provide theoretical support for the design of the high-performance silicon-based light sources.展开更多
Abstract: Amorphous LazHf2O7 films were grown on Si(100) by pulsed laser deposition method. The valence and conduction band offsets between amorphous La2Hf2O7 film and silicon were determined by using synchrotron r...Abstract: Amorphous LazHf2O7 films were grown on Si(100) by pulsed laser deposition method. The valence and conduction band offsets between amorphous La2Hf2O7 film and silicon were determined by using synchrotron radiation photoemission spectroscopy. The energy band gap of amorphous La2Hf2O7 film was measured from the energy-loss spectra of O ls photoelectrons. The band gap of amorphous LazHf2O7 film was determined to be 5.4±0.2 eV. The valence and the conduction-band offsets of amorphous La2Hf2O7 film to Si were obtained to be 2.7±0.2 and 1.6±0.2 eV, respectively. These results indieated that the amorphous La2Hf2O7 film could be one promising candidate for high-k gate dielectrics.展开更多
A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggest...A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggested. The applicability of this method is verified by calculation of the valence band offsets at strained layer heterojuntions ,such as InP/InAs, InP/GaP, GaAs/InAs, GaP/GaAs and AlAs/InAs with various strain conditions.展开更多
Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device pe...Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device performance,as in a wide bandgap Zn_(1-x)Mg_(x)O(ZMO)to replace the CdS buffer in Cu(In_(1-x),Ga_(x))Se_(2)(CIGSe)thin-film solar cell structure.ZMO is one of the candidates for the buffer material in CIGSe thin-film solar cells with a wide and controllable bandgap depending on the Mg content,which can be helpful in attaining a suitable conduction band offset.Hence,compared to the fixed and limited bandgap of a CdS buffer,a ZMO buffer may provide advantages in V_(oc) and J_(sc) based on its controllable and wide bandgap,even with a relatively wider bandgap CIGSe thin-film solar cell.In addition,to solve problems with the defect sites at the ZMO/CIGSe junction interface,a few-nanometer ZnS layer is employed for heterojunction interface passivation,forming a ZMO/ZnS buffer structure by atomic layer deposition(ALD).Finally,a Cd-free all-dry-processed CIGSe solar cell with a wider bandgap(1.25 eV)and ALD-grown buffer structure exhibited the best power conversion efficiency of 19.1%,which exhibited a higher performance than the CdS counterpart.展开更多
Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIG...Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIGS.One of the reasons is the high recombination rate of carriers at the interface.In this paper,in order to reduce the carrier recombination,a new solar cell structure with double absorber layers of Al-doped ZnO(AZO)/intrinsic(i)-ZnO/CdS/CZTS_(x1)Se_(1−x1)(CZTSSe_(1))/CZTS_(x2)Se_(1−x2)(CZTSSe_(2))/Mo was proposed,and the optimal conduction band offsets(CBOs)of CdS/CZTSSe_(1) interface and CZTSSe_(1)/CZTSSe_(2) interface were determined by changing the S ratio in CZTSSe_(1) and CZTSSe_(2),and the effect of thickness of CZTSSe_(1) on the performance of the cell was studied.The efficiencies of the optimized single and double absorber layers reached 17.97%and 23.4%,respectively.Compared with the single absorber layer structure,the proposed structure with double absorber layers has better cell performance.展开更多
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron...Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm^(2) and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.展开更多
The effect of the deposition temperature of the buffer layer In_2S_3 on the band alignment of CZTS/In_2S_3 heterostructures and the solar cell performance have been investigated.The In_2S_3 films are prepared by therm...The effect of the deposition temperature of the buffer layer In_2S_3 on the band alignment of CZTS/In_2S_3 heterostructures and the solar cell performance have been investigated.The In_2S_3 films are prepared by thermal evaporation method at temperatures of 30,100,150,and 200 ℃,respectively.By using x-ray photoelectron spectroscopy(XPS),the valence band offsets(VBO) are determined to be-0.28 ±0.1,-0.28 ±0.1,-0.34 ±0.1,and-0.42 ±0.1 eV for the CZTS/In_2S_3heterostructures deposited at 30,100,150,and 200 ℃,respectively,and the corresponding conduction band offsets(CBO)are found to be 0.3 ±0.1,0.41 ±0.1,0.22±0.1,and 0.01 ±0.1 eV,respectively.The XPS study also reveals that interdiffusion of In and Cu occurs at the interface of the heterostructures,which is especially serious at 200 ℃ leading to large amount of interface defects or the formation of CuInS_2 phase at the interface.The CZTS solar cell with the buffer layer In_2S_3 deposited at 150 ℃ shows the best performance due to the proper CBO value at the heterostructure interface and the improved crystal quality of In_2S_3 film induced by the appropriate deposition temperature.The device prepared at 100 ℃presents the poorest performance owing to too high a value of CBO.It is demonstrated that the deposition temperature is a crucial parameter to control the quality of the solar cells.展开更多
P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on...P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p) SHJ solar cells was investigated systematically. It is shown that the open circuit voltage(Voc) and fill factor(F F) are very sensitive to these parameters. In addition, by analyzing equilibrium energy band diagram and electric field distribution, the influence mechanisms that interface states, conduction band offset, and front contact impact on the carrier transport, interface recombination and cell performance were studied in detail. Finally, the optimum parameters for the a-SiC:H(n)/c-Si(p) SHJ solar cells were provided. By employing these optimum parameters, the efficiency of SHJ solar cell based on p-type c-Si was significantly improved.展开更多
A series of Zn_(1-x)Cd_xO thin films have been fabricated on sapphire by pulsed-laser deposition(PLD), successfully. To investigate the effect of Cd concentration on structural and optical properties of Zn_(1-x)...A series of Zn_(1-x)Cd_xO thin films have been fabricated on sapphire by pulsed-laser deposition(PLD), successfully. To investigate the effect of Cd concentration on structural and optical properties of Zn_(1-x)Cd_xO films, x-ray diffraction(XRD),ultraviolet-visible spectroscopy(UV-vis), and x-ray photoelectron spectroscopy(XPS) are employed to characterize the films in detail. The XRD pattern indicates that the Zn_(1-x)Cd_xO thin films have high single-orientation of the c axis. The energy bandgap values of ZnCdO thin films decrease from 3.26 eV to 2.98 eV with the increasing Cd concentration(x)according to the(αhν)~2–hν curve. Furthermore, the band offsets of Zn_(1-x)Cd_xO/ZnO heterojunctions are determinated by XPS, indicating that a type-I alignment takes place at the interface and the value of band offset could be tuned by adjusting the Cd concentration.展开更多
Using the first-principles band-structure method and a special quasirandom structure(SQS) approach,we have systematically calculated the alloy bowing coefficients and the nature band offsets of SnxZn1-x Te alloys.We s...Using the first-principles band-structure method and a special quasirandom structure(SQS) approach,we have systematically calculated the alloy bowing coefficients and the nature band offsets of SnxZn1-x Te alloys.We show that the bowing coefficients and band gaps of these alloys are sensitively composition dependent.Due to wave functions full overlapping and delocalization of the Sn outermost p orbits and Zn s orbits,the coupling between these states is very strong,resulting in a significant downshift of conduction band edge with the increase of the Sn concentration x,While the valence band edge keeps almost unchanged compared with that of the binary ZnTe,thus improving the possibility for ambipolar-doping.展开更多
Theε-Ga2O3 p-n heterojunctions(HJ)have been demonstrated using typical p-type oxide semiconductors(NiO or SnO).Theε-Ga2O3 thin film was heteroepitaxial grown by metal organic chemical vapor deposition(MOCVD)with thr...Theε-Ga2O3 p-n heterojunctions(HJ)have been demonstrated using typical p-type oxide semiconductors(NiO or SnO).Theε-Ga2O3 thin film was heteroepitaxial grown by metal organic chemical vapor deposition(MOCVD)with three-step growth method.The polycrystalline SnO and NiO thin films were deposited on theε-Ga2O3 thin film by electron-beam evaporation and thermal oxidation,respectively.The valence band offsets(VBO)were determined by x-ray photoelectron spectroscopy(XPS)to be 2.17 eV at SnO/ε-Ga2O3 and 1.7 eV at NiO/ε-Ga2O3.Considering the bandgaps determined by ultraviolet-visible spectroscopy,the conduction band offsets(CBO)of 0.11 eV at SnO/ε-Ga2O3 and 0.44 eV at NiO/ε-Ga2O3 were obtained.The type-Ⅱband diagrams have been drawn for both p-n HJs.The results are useful to understand the electronic structures at theε-Ga2O3 p-n HJ interface,and design optoelectronic devices based onε-Ga2O3 with novel functionality and improved performance.展开更多
The energy band structure with type-I alignment at the PbTe/CdTe(111) heterojunction interface is determined by the ultraviolet photoelectron spectrum using synchrotron radiation. The valence band and conduction ban...The energy band structure with type-I alignment at the PbTe/CdTe(111) heterojunction interface is determined by the ultraviolet photoelectron spectrum using synchrotron radiation. The valence band and conduction band offsets are obtained to be 0.09±0.12 and 1.19±0.12 eV, respectively. These results are in agreement with theoretically predicted ones. The accurate determination of the valence band and conduction band offsets is useful for the fundamental understanding of the mid-infrared light emission from the PbTe/CdTe heterostructures and its application in devices.展开更多
Tailoring the electronic states of the Al N/diamond interface is critical to the development of the next-generation semiconductor devices such as the deep-ultraviolet light-emitting diode, photodetector, and high-powe...Tailoring the electronic states of the Al N/diamond interface is critical to the development of the next-generation semiconductor devices such as the deep-ultraviolet light-emitting diode, photodetector, and high-power high-frequency field-effect transistor. In this work, we investigate the electronic properties of the semipolar plane Al N(11^-01)/diamond heterointerfaces by using the first-principles method with regard to different terminated planes of Al N and surface structures of diamond(100) plane. A large number of gap states exist at semi-polar plane Al N(11^-01)/diamond heterointerface, which results from the N 2 p and C 2 s2 p orbital states. Besides, the charge transfer at the interface strongly depends on the surface termination of diamond, on which hydrogen suppresses the charge exchange at the interface. The band alignments of semi-polar plane Al N(11^-01)/diamond show a typical electronic character of the type-Ⅱ staggered band configuration. The hydrogen-termination of diamond markedly increases the band offset with a maximum valence band offset of 2.0 e V and a conduction band offset of 1.3 e V for the semi-polar plane N–Al N(11^-01)/hydrogenated diamond surface. The unique band alignment of this Type-Ⅱ staggered system with the higher CBO and VBO of the semi-polar Al N/HC(100) heterostructure provides an avenue to the development of robust high-power high-frequency power devices.展开更多
The average bond energy method is popularized and applied to study band offsets at strained layer heterojunctions. By careful examination of hydrostatic and uniaxial strain actions on the band offset parameter Emv,it ...The average bond energy method is popularized and applied to study band offsets at strained layer heterojunctions. By careful examination of hydrostatic and uniaxial strain actions on the band offset parameter Emv,it is found that the average band offset parameter Emv,av=Em-Ev, av remains basically unchanged under different strain conditions. Therefore, provided the band offset parameter before strain Emv,0 of bulk material is calculated, and the experiment values of deformation potential b and spin-orbit (SO) splitting energy △0 are quoted, the Emv at strained layer can be obtained by a simple and convenient algebraic calculation. Thus the valence band offset △Ev at strained layer heterojunction can also be predicted conveniently. This simplified calculation method is characterized by decreased calculation amount and increased conviction due to use as many as possible the experiment values.展开更多
A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry ...A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry optimization and the electronic property of the heterojunction are implemented through the first-principles calculation based on the density functional theory (DFT). The results indicate that the structural rearrangement takes place mainly on the interface and the energy gap of the heterojunction is 0.31 eV, which is narrower than those of the isolated CNT and the isolated SiCNT. By using the average bond energy method, the valence band offset and the conduction band offset are obtained as 0.71 and -0.03 eV, respectively.展开更多
A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the elec...A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the electrons injected via the Si n-p- junction diffuse to and are confined in the β-FeSi 2 particles due to the band offset.The storage charge at the β-FeSi 2-Si heterojunction inversely hamper the further diffusion of electrons,giving rise to the localization of electrons in the p--Si near the Si junction,which prevents them from nonradiative recombination channels.This results in electroluminescence (EL) intensity from both Si and β-FeSi 2 quenching slowly up to room temperature.The temperature dependent ratio of EL intensity of β-FeSi 2 to Si indicates the loss of electron confinement following thermal excitation model.The conduction band offset between Si and β-FeSi 2 is determined to be about 0 2eV.展开更多
This review and research study provides conclusive discussion on the electron and hole effective masses in thermal silicon dioxide placing their values at 0.42m and 0.58m,where m is the free electron mass,correct to t...This review and research study provides conclusive discussion on the electron and hole effective masses in thermal silicon dioxide placing their values at 0.42m and 0.58m,where m is the free electron mass,correct to two decimal places.Only one of the masses needs to be determined as the electron and hole masses in materials add up to be equal to free electron mass with the hole effective mass being larger than the electron effective mass.The review also convinces the reader that the CBO(conduction band offset)or the Si-SiO2 barrier height at the oxide/silicon interface of a Si MOS(metal-oxide-semiconductor)device is 3.20 eV.展开更多
Solar cells based on perovskites have emerged as a transpiring technology in the field of photovoltaic. These cells exhibit high power conversion efficiency. The perovskite material is observed to have good absorption...Solar cells based on perovskites have emerged as a transpiring technology in the field of photovoltaic. These cells exhibit high power conversion efficiency. The perovskite material is observed to have good absorption in the entire visible spectrum which can be well illustrated by the quantum efficiency curve. In this paper, theoretical analysis has been done through device simulation for designing solar cell based on mixed halide perovskite. Various parameters have efficacy on the solar cell efficiency such as defect density, layer thickness, doping concentration, band offsets, etc. The use of copper oxide as the hole transport material has been analyzed. The analysis divulges that due to its mobility of charge carriers, it can be used as an alternative to spiro-OMeTAD. With the help of simulations, reasonable materials have been employed for the optimal design of solar cell based on perovskite material. With the integration of copper oxide into the solar cell structure, the results obtained are competent enough. The simulations have shown that with the use of copper oxide as hole transport material with mixed halide perovskite as absorber, the power conversion efficiency has improved by 6%. The open circuit voltage has shown an increase of 0.09 V, short circuit current density has increased by 2.32 mA/cm2, and improvement in fill factor is 8.75%.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.60877017)the Innovation Program of Shanghai Municipal Education Commission (Grant No.08YZ04)the Shanghai Leading Academic Discipline Project (Grant No.S30107)
文摘The valence band offsets of the strained and longitudinally relaxed diamond/cubic boron-nitride (c-BN) (110) superlattice are investigated by the plane wave density functional theory approach and using the on-site core electron as a reference energy level. For the strained diamond/c-BN superlattice, the valence band offset of around 1.50 eV is in good agreement with those using all the electrons methods. As for the longitudinally relaxed superlattice, the valence band offset of around 1.28 eV is smaller than that of the strained superlattice. The reason for this is mainly due to the split of the valence band maximum caused by the anisotropic strain.
基金Project supported by the Special Funds of the National Natural Science Foundation of China(Grant Nos.11547226 and 11547180)
文摘Cd1-xZnxS/Cu2ZnSnS4 (CZTS)-based thin film solar cells usually use CdS as a buffer layer, but due to its smaller band gap (2.4 eV), CdS film has been replaced with higher band gap materials. The cadmium zinc sulfide (CdZnS) ternary compound has a higher band gap than other compounds, which leads to a decrease in window absorption loss. In this paper, the band offsets at Cd1-xZnxS/CuzZnSnS4 (CZTS) heterointerface are calculated by the first-principles, density- functional and pseudopotential method. The band offsets at Cdl xZnxS/CZTS heterointerface are tuned by controlling the composition of Zn in Cd1-xZnxS alloy, the calculated valence band offsets are small, which is consistent with the commonanion rule. The favorable heterointerface of type-I with a moderate barrier height (〈 0.3 eV) can be obtained by controlling the composition of Zn in Cdl-xZnxS alloy between 0.25 and 0.375.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFB2200100)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB22)+1 种基金the National Natural Science Foundation of China(Grant No.118764347,11614003,11804333)H.X.D.was also supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2017154).
文摘Band offset in semiconductors is a fundamental physical quantity that determines the performance of optoelectronic devices.However,the current method of calculating band offset is difficult to apply directly to the large-lattice-mismatched and heterovalent semiconductors because of the existing electric field and large strain at the interfaces.Here,we proposed a modified method to calculate band offsets for such systems,in which the core energy level shifts caused by heterovalent effects and lattice mismatch are estimated by interface reconstruction and the insertion of unidirectional strain structures as transitions,respectively.Taking the Si and III-V systems as examples,the results have the same accuracy as what is a widely used method for small-lattice-mismatched systems,and are much closer to the experimental values for the large-lattice-mismatched and heterovalent systems.Furthermore,by systematically studying the heterojunctions of Si and III-V semiconductors along different directions,it is found that the band offsets of Si/InAs and Si/InSb systems in[100],[110]and[111]directions belong to the type I,and could be beneficial for silicon-based luminescence performance.Our study offers a more reliable and direct method for calculating band offsets of large-lattice-mismatched and heterovalent semiconductors,and could provide theoretical support for the design of the high-performance silicon-based light sources.
基金Projects supported by National Natural Science Foundation of China(10974191)Doctorial Foundation of Zhengzhou University of LightIndustry(2010BSJJ028)
文摘Abstract: Amorphous LazHf2O7 films were grown on Si(100) by pulsed laser deposition method. The valence and conduction band offsets between amorphous La2Hf2O7 film and silicon were determined by using synchrotron radiation photoemission spectroscopy. The energy band gap of amorphous La2Hf2O7 film was measured from the energy-loss spectra of O ls photoelectrons. The band gap of amorphous LazHf2O7 film was determined to be 5.4±0.2 eV. The valence and the conduction-band offsets of amorphous La2Hf2O7 film to Si were obtained to be 2.7±0.2 and 1.6±0.2 eV, respectively. These results indieated that the amorphous La2Hf2O7 film could be one promising candidate for high-k gate dielectrics.
文摘A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggested. The applicability of this method is verified by calculation of the valence band offsets at strained layer heterojuntions ,such as InP/InAs, InP/GaP, GaAs/InAs, GaP/GaAs and AlAs/InAs with various strain conditions.
基金conducted under the framework of the research and development program of the Korea Institute of Energy Research(C4-2412 and C4-2413)supported by the National Research Foundation of Korea(grant number 2022M3J1A1063019)funded by the Ministry of Science and ICT.
文摘Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device performance,as in a wide bandgap Zn_(1-x)Mg_(x)O(ZMO)to replace the CdS buffer in Cu(In_(1-x),Ga_(x))Se_(2)(CIGSe)thin-film solar cell structure.ZMO is one of the candidates for the buffer material in CIGSe thin-film solar cells with a wide and controllable bandgap depending on the Mg content,which can be helpful in attaining a suitable conduction band offset.Hence,compared to the fixed and limited bandgap of a CdS buffer,a ZMO buffer may provide advantages in V_(oc) and J_(sc) based on its controllable and wide bandgap,even with a relatively wider bandgap CIGSe thin-film solar cell.In addition,to solve problems with the defect sites at the ZMO/CIGSe junction interface,a few-nanometer ZnS layer is employed for heterojunction interface passivation,forming a ZMO/ZnS buffer structure by atomic layer deposition(ALD).Finally,a Cd-free all-dry-processed CIGSe solar cell with a wider bandgap(1.25 eV)and ALD-grown buffer structure exhibited the best power conversion efficiency of 19.1%,which exhibited a higher performance than the CdS counterpart.
基金supported by the Science and Technology Innovation Development Program(No.70304901).
文摘Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIGS.One of the reasons is the high recombination rate of carriers at the interface.In this paper,in order to reduce the carrier recombination,a new solar cell structure with double absorber layers of Al-doped ZnO(AZO)/intrinsic(i)-ZnO/CdS/CZTS_(x1)Se_(1−x1)(CZTSSe_(1))/CZTS_(x2)Se_(1−x2)(CZTSSe_(2))/Mo was proposed,and the optimal conduction band offsets(CBOs)of CdS/CZTSSe_(1) interface and CZTSSe_(1)/CZTSSe_(2) interface were determined by changing the S ratio in CZTSSe_(1) and CZTSSe_(2),and the effect of thickness of CZTSSe_(1) on the performance of the cell was studied.The efficiencies of the optimized single and double absorber layers reached 17.97%and 23.4%,respectively.Compared with the single absorber layer structure,the proposed structure with double absorber layers has better cell performance.
基金funding from the European Union H2020 programme under Excellence research,ERC grant MOLEMAT(726360)PARASOL(RTI2018-102292-B-I00)from Spanish ministry of Science and Innovation。
文摘Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm^(2) and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574038 and 61674038)the Natural Science Foundation of Fujian Province,China(Grant No.2014J05073)
文摘The effect of the deposition temperature of the buffer layer In_2S_3 on the band alignment of CZTS/In_2S_3 heterostructures and the solar cell performance have been investigated.The In_2S_3 films are prepared by thermal evaporation method at temperatures of 30,100,150,and 200 ℃,respectively.By using x-ray photoelectron spectroscopy(XPS),the valence band offsets(VBO) are determined to be-0.28 ±0.1,-0.28 ±0.1,-0.34 ±0.1,and-0.42 ±0.1 eV for the CZTS/In_2S_3heterostructures deposited at 30,100,150,and 200 ℃,respectively,and the corresponding conduction band offsets(CBO)are found to be 0.3 ±0.1,0.41 ±0.1,0.22±0.1,and 0.01 ±0.1 eV,respectively.The XPS study also reveals that interdiffusion of In and Cu occurs at the interface of the heterostructures,which is especially serious at 200 ℃ leading to large amount of interface defects or the formation of CuInS_2 phase at the interface.The CZTS solar cell with the buffer layer In_2S_3 deposited at 150 ℃ shows the best performance due to the proper CBO value at the heterostructure interface and the improved crystal quality of In_2S_3 film induced by the appropriate deposition temperature.The device prepared at 100 ℃presents the poorest performance owing to too high a value of CBO.It is demonstrated that the deposition temperature is a crucial parameter to control the quality of the solar cells.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA050301)Scientific Research of Hebei Education Department,China(Grant No.QN2017135)
文摘P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p) SHJ solar cells was investigated systematically. It is shown that the open circuit voltage(Voc) and fill factor(F F) are very sensitive to these parameters. In addition, by analyzing equilibrium energy band diagram and electric field distribution, the influence mechanisms that interface states, conduction band offset, and front contact impact on the carrier transport, interface recombination and cell performance were studied in detail. Finally, the optimum parameters for the a-SiC:H(n)/c-Si(p) SHJ solar cells were provided. By employing these optimum parameters, the efficiency of SHJ solar cell based on p-type c-Si was significantly improved.
基金supported by the National Natural Science Foundation of China(Grant No.11404302)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD1-2017-9)
文摘A series of Zn_(1-x)Cd_xO thin films have been fabricated on sapphire by pulsed-laser deposition(PLD), successfully. To investigate the effect of Cd concentration on structural and optical properties of Zn_(1-x)Cd_xO films, x-ray diffraction(XRD),ultraviolet-visible spectroscopy(UV-vis), and x-ray photoelectron spectroscopy(XPS) are employed to characterize the films in detail. The XRD pattern indicates that the Zn_(1-x)Cd_xO thin films have high single-orientation of the c axis. The energy bandgap values of ZnCdO thin films decrease from 3.26 eV to 2.98 eV with the increasing Cd concentration(x)according to the(αhν)~2–hν curve. Furthermore, the band offsets of Zn_(1-x)Cd_xO/ZnO heterojunctions are determinated by XPS, indicating that a type-I alignment takes place at the interface and the value of band offset could be tuned by adjusting the Cd concentration.
基金Supported by the National Basic Research Program of China under Grant No. 2011CB606405the Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ4002the Fundamental Research Funds for the Central Universities
文摘Using the first-principles band-structure method and a special quasirandom structure(SQS) approach,we have systematically calculated the alloy bowing coefficients and the nature band offsets of SnxZn1-x Te alloys.We show that the bowing coefficients and band gaps of these alloys are sensitively composition dependent.Due to wave functions full overlapping and delocalization of the Sn outermost p orbits and Zn s orbits,the coupling between these states is very strong,resulting in a significant downshift of conduction band edge with the increase of the Sn concentration x,While the valence band edge keeps almost unchanged compared with that of the binary ZnTe,thus improving the possibility for ambipolar-doping.
基金Project supported by the National Natural Science Foundation of China(Grant No.61774172)the Guangdong Provincial Department of Science and Technology,China(Grant Nos.2019B010132002 and 2016B090918106)+1 种基金the Pengcheng Scholar Funding(2018)Shenzhen Science and Technology Innovation Committee,China(Grant No.KQJSCX20180323174713505).
文摘Theε-Ga2O3 p-n heterojunctions(HJ)have been demonstrated using typical p-type oxide semiconductors(NiO or SnO).Theε-Ga2O3 thin film was heteroepitaxial grown by metal organic chemical vapor deposition(MOCVD)with three-step growth method.The polycrystalline SnO and NiO thin films were deposited on theε-Ga2O3 thin film by electron-beam evaporation and thermal oxidation,respectively.The valence band offsets(VBO)were determined by x-ray photoelectron spectroscopy(XPS)to be 2.17 eV at SnO/ε-Ga2O3 and 1.7 eV at NiO/ε-Ga2O3.Considering the bandgaps determined by ultraviolet-visible spectroscopy,the conduction band offsets(CBO)of 0.11 eV at SnO/ε-Ga2O3 and 0.44 eV at NiO/ε-Ga2O3 were obtained.The type-Ⅱband diagrams have been drawn for both p-n HJs.The results are useful to understand the electronic structures at theε-Ga2O3 p-n HJ interface,and design optoelectronic devices based onε-Ga2O3 with novel functionality and improved performance.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974174 and 60676003)
文摘The energy band structure with type-I alignment at the PbTe/CdTe(111) heterojunction interface is determined by the ultraviolet photoelectron spectrum using synchrotron radiation. The valence band and conduction band offsets are obtained to be 0.09±0.12 and 1.19±0.12 eV, respectively. These results are in agreement with theoretically predicted ones. The accurate determination of the valence band and conduction band offsets is useful for the fundamental understanding of the mid-infrared light emission from the PbTe/CdTe heterostructures and its application in devices.
基金Project supported by the Scholarship Council of China(Grant No.201508340047)the Postdoctoral Science Foundation of China(Grant No.2016M601993)+1 种基金the Postdoctoral Science Foundation of Anhui Province,China(Grant No.2017B215)the Anhui Province University Outstanding Talent Cultivation Program,China(Grant No.gxfx ZD2016077)
文摘Tailoring the electronic states of the Al N/diamond interface is critical to the development of the next-generation semiconductor devices such as the deep-ultraviolet light-emitting diode, photodetector, and high-power high-frequency field-effect transistor. In this work, we investigate the electronic properties of the semipolar plane Al N(11^-01)/diamond heterointerfaces by using the first-principles method with regard to different terminated planes of Al N and surface structures of diamond(100) plane. A large number of gap states exist at semi-polar plane Al N(11^-01)/diamond heterointerface, which results from the N 2 p and C 2 s2 p orbital states. Besides, the charge transfer at the interface strongly depends on the surface termination of diamond, on which hydrogen suppresses the charge exchange at the interface. The band alignments of semi-polar plane Al N(11^-01)/diamond show a typical electronic character of the type-Ⅱ staggered band configuration. The hydrogen-termination of diamond markedly increases the band offset with a maximum valence band offset of 2.0 e V and a conduction band offset of 1.3 e V for the semi-polar plane N–Al N(11^-01)/hydrogenated diamond surface. The unique band alignment of this Type-Ⅱ staggered system with the higher CBO and VBO of the semi-polar Al N/HC(100) heterostructure provides an avenue to the development of robust high-power high-frequency power devices.
基金Special Doctoral Research Foundation of Chinese State Commission of Education!(9538409 )Natural Science Foundation of Fujian
文摘The average bond energy method is popularized and applied to study band offsets at strained layer heterojunctions. By careful examination of hydrostatic and uniaxial strain actions on the band offset parameter Emv,it is found that the average band offset parameter Emv,av=Em-Ev, av remains basically unchanged under different strain conditions. Therefore, provided the band offset parameter before strain Emv,0 of bulk material is calculated, and the experiment values of deformation potential b and spin-orbit (SO) splitting energy △0 are quoted, the Emv at strained layer can be obtained by a simple and convenient algebraic calculation. Thus the valence band offset △Ev at strained layer heterojunction can also be predicted conveniently. This simplified calculation method is characterized by decreased calculation amount and increased conviction due to use as many as possible the experiment values.
基金supported by the National Defense Pre-research Foundation of China (Grant No 9140A08060407DZ0103)
文摘A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry optimization and the electronic property of the heterojunction are implemented through the first-principles calculation based on the density functional theory (DFT). The results indicate that the structural rearrangement takes place mainly on the interface and the energy gap of the heterojunction is 0.31 eV, which is narrower than those of the isolated CNT and the isolated SiCNT. By using the average bond energy method, the valence band offset and the conduction band offset are obtained as 0.71 and -0.03 eV, respectively.
文摘A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the electrons injected via the Si n-p- junction diffuse to and are confined in the β-FeSi 2 particles due to the band offset.The storage charge at the β-FeSi 2-Si heterojunction inversely hamper the further diffusion of electrons,giving rise to the localization of electrons in the p--Si near the Si junction,which prevents them from nonradiative recombination channels.This results in electroluminescence (EL) intensity from both Si and β-FeSi 2 quenching slowly up to room temperature.The temperature dependent ratio of EL intensity of β-FeSi 2 to Si indicates the loss of electron confinement following thermal excitation model.The conduction band offset between Si and β-FeSi 2 is determined to be about 0 2eV.
文摘This review and research study provides conclusive discussion on the electron and hole effective masses in thermal silicon dioxide placing their values at 0.42m and 0.58m,where m is the free electron mass,correct to two decimal places.Only one of the masses needs to be determined as the electron and hole masses in materials add up to be equal to free electron mass with the hole effective mass being larger than the electron effective mass.The review also convinces the reader that the CBO(conduction band offset)or the Si-SiO2 barrier height at the oxide/silicon interface of a Si MOS(metal-oxide-semiconductor)device is 3.20 eV.
文摘Solar cells based on perovskites have emerged as a transpiring technology in the field of photovoltaic. These cells exhibit high power conversion efficiency. The perovskite material is observed to have good absorption in the entire visible spectrum which can be well illustrated by the quantum efficiency curve. In this paper, theoretical analysis has been done through device simulation for designing solar cell based on mixed halide perovskite. Various parameters have efficacy on the solar cell efficiency such as defect density, layer thickness, doping concentration, band offsets, etc. The use of copper oxide as the hole transport material has been analyzed. The analysis divulges that due to its mobility of charge carriers, it can be used as an alternative to spiro-OMeTAD. With the help of simulations, reasonable materials have been employed for the optimal design of solar cell based on perovskite material. With the integration of copper oxide into the solar cell structure, the results obtained are competent enough. The simulations have shown that with the use of copper oxide as hole transport material with mixed halide perovskite as absorber, the power conversion efficiency has improved by 6%. The open circuit voltage has shown an increase of 0.09 V, short circuit current density has increased by 2.32 mA/cm2, and improvement in fill factor is 8.75%.