A coupled Navier-Stokes/free-wake method is developed to predict the rotor aerodynamics and wake.The widely-used Farassat 1 Aformulation is adopted to predict the rotor noise.In the coupled method,the Reynolds-average...A coupled Navier-Stokes/free-wake method is developed to predict the rotor aerodynamics and wake.The widely-used Farassat 1 Aformulation is adopted to predict the rotor noise.In the coupled method,the Reynolds-averaged Navier-Stokes(RANS)solver is established to simulate complex aerodynamic phenomena around blade and the tip-wake is captured by a free-wake model without numerical dissipation in the off-body wake zone.To overcome the time-consuming of the coupling strategy in previous studies,a more efficient coupling strategy is presented,by which only the induced velocity on the outer boundary grid need to be calculated.In order to obtain blade control settings,a delta trimming procedure is developed,which is more efficient than traditional trim method in the calculation of Jacobian matrix.Several flight conditions are simulated to demonstrate the validity of the coupled method.Then the rotor noise of operational load survey(OLS)is studied by the developed method as an application and the computational results are shown to be in good agreements with the available experimental data.展开更多
2006年10月9日证监公司字[2006]220号Globe Union lndustrial(BVl)Crop.欧阳明、欧阳磊、欧阳玄:你公司及其一致行动人报送的《深圳成霖洁具股份有限公司收购报告书》和《关于GOBO-BVI等收购人豁免要约收购的申请》及相关文件收悉。根...2006年10月9日证监公司字[2006]220号Globe Union lndustrial(BVl)Crop.欧阳明、欧阳磊、欧阳玄:你公司及其一致行动人报送的《深圳成霖洁具股份有限公司收购报告书》和《关于GOBO-BVI等收购人豁免要约收购的申请》及相关文件收悉。根据《证券法》、《上市公司收购管理办法》(证监会令第10号)的有关规定,经审核,现批复如下:展开更多
A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of fr...A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of freedom of the Trailing Edge Flap(TEF)is analyzed by employing an inverse nested overset grid method.Simulation of non-rotational and rotational modes of blade motion are carried out to investigate the formation and development of TEF shedding vortex with high-frequency deflection of TEF.Moreover,the mechanism of TEF deflection interference with blade tip vortex and overall rotor aerodynamics is also explored.In nonrotational mode,two bundles of vortices form at the gap ends of TEF and the main blade and merge into a single TEF vortex.Dynamic deflection of the TEF significantly interferes with the blade tip vortex.The position of the blade tip vortex consistently changes,and its frequency is directly related to the frequency of TEF deflection.In rotational mode,the tip vortex forms a helical structure.The end vortices at the gap sides co-swirl and subsequently merge into the concentrated beam of tip vortices,causing fluctuations in the vorticity and axial position of the tip vortex under the rotor.This research concludes with the investigation on suppression of Blade Vortex Interaction(BVI),showing an increase in miss distance and reduction in the vorticity of tip vortex through TEF phase control at a particular control frequency.Through this mechanism,a designed TEF deflection law increases the miss distance by 34.7%and reduces vorticity by 11.9%at the target position,demonstrating the effectiveness of AFC in mitigating BVI.展开更多
文摘A coupled Navier-Stokes/free-wake method is developed to predict the rotor aerodynamics and wake.The widely-used Farassat 1 Aformulation is adopted to predict the rotor noise.In the coupled method,the Reynolds-averaged Navier-Stokes(RANS)solver is established to simulate complex aerodynamic phenomena around blade and the tip-wake is captured by a free-wake model without numerical dissipation in the off-body wake zone.To overcome the time-consuming of the coupling strategy in previous studies,a more efficient coupling strategy is presented,by which only the induced velocity on the outer boundary grid need to be calculated.In order to obtain blade control settings,a delta trimming procedure is developed,which is more efficient than traditional trim method in the calculation of Jacobian matrix.Several flight conditions are simulated to demonstrate the validity of the coupled method.Then the rotor noise of operational load survey(OLS)is studied by the developed method as an application and the computational results are shown to be in good agreements with the available experimental data.
文摘2006年10月9日证监公司字[2006]220号Globe Union lndustrial(BVl)Crop.欧阳明、欧阳磊、欧阳玄:你公司及其一致行动人报送的《深圳成霖洁具股份有限公司收购报告书》和《关于GOBO-BVI等收购人豁免要约收购的申请》及相关文件收悉。根据《证券法》、《上市公司收购管理办法》(证监会令第10号)的有关规定,经审核,现批复如下:
基金supported by the National Natural Science Foundation of China(No.11972190)。
文摘A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of freedom of the Trailing Edge Flap(TEF)is analyzed by employing an inverse nested overset grid method.Simulation of non-rotational and rotational modes of blade motion are carried out to investigate the formation and development of TEF shedding vortex with high-frequency deflection of TEF.Moreover,the mechanism of TEF deflection interference with blade tip vortex and overall rotor aerodynamics is also explored.In nonrotational mode,two bundles of vortices form at the gap ends of TEF and the main blade and merge into a single TEF vortex.Dynamic deflection of the TEF significantly interferes with the blade tip vortex.The position of the blade tip vortex consistently changes,and its frequency is directly related to the frequency of TEF deflection.In rotational mode,the tip vortex forms a helical structure.The end vortices at the gap sides co-swirl and subsequently merge into the concentrated beam of tip vortices,causing fluctuations in the vorticity and axial position of the tip vortex under the rotor.This research concludes with the investigation on suppression of Blade Vortex Interaction(BVI),showing an increase in miss distance and reduction in the vorticity of tip vortex through TEF phase control at a particular control frequency.Through this mechanism,a designed TEF deflection law increases the miss distance by 34.7%and reduces vorticity by 11.9%at the target position,demonstrating the effectiveness of AFC in mitigating BVI.