期刊文献+
共找到280,395篇文章
< 1 2 250 >
每页显示 20 50 100
基于蜣螂优化BP-PID的温室自主跟随平台行走速度控制研究 被引量:2
1
作者 肖茂华 陈泰 +3 位作者 庄晓华 朱烨均 胡艺缤 王鸿翔 《农业机械学报》 北大核心 2025年第2期83-91,154,共10页
针对当前温室作业环境复杂、现有机械行走稳定性差的问题,本文提出了温室自主跟随电动平台行走速度控制方法。由于该系统存在非线性和时变性的特点,传统PID控制算法无法实现有效控制,因此提出了一种基于蜣螂(Dung beetle optimizer,DBO... 针对当前温室作业环境复杂、现有机械行走稳定性差的问题,本文提出了温室自主跟随电动平台行走速度控制方法。由于该系统存在非线性和时变性的特点,传统PID控制算法无法实现有效控制,因此提出了一种基于蜣螂(Dung beetle optimizer,DBO)优化BP神经网络PID控制算法。该算法采用DBO优化算法对BP神经网络的权值进行优化,加快了BP神经网络的自学习速率,实现对温室自主跟随电动平台行走速度的快速精确控制,提高系统的响应速度并降低超调量,最后,将本文提出的行走速度控制算法与PID控制算法、BP-PID控制算法、遗传算法(Genetic algorithm,GA)优化PID控制算法、蚁群算法(Ant colony optimization,ACO)优化PID控制算法对比。试验结果表明,当行走速度为1 m/s时,系统平均响应速度为0.11 s,调整时间为0.27 s,最大超调量为2.44%;当履带线速度大小和方向发生变化时,系统依然表现出响应速度快、超调量小且稳态过程无振荡的优点。DBO-BP-PID控制算法在控制稳定性和控制精度上表现更优,有效降低了系统时滞性和非线性影响,满足温室自主跟随电动平台行走速度控制的需求。 展开更多
关键词 温室 自主跟随电动平台 行走速度控制 蜣螂优化算法 bp-pid控制
在线阅读 下载PDF
基于IGWO-BP-PID的污水处理管道流体控制
2
作者 孙宏昌 苏云飞 +2 位作者 蒋永翔 李超 邓三鹏 《传感器与微系统》 北大核心 2025年第6期91-94,共4页
智能污水处理系统管道内流量通过管道阀开度进行控制。建立了系统中重要流域的几何模型与湍流方程,通过ANSYS Workbench软件对重要管道进行有限元分析,获得管道阀不同开度下重要管道内的流速和压力,将其与实际情况进行对比,验证了有限... 智能污水处理系统管道内流量通过管道阀开度进行控制。建立了系统中重要流域的几何模型与湍流方程,通过ANSYS Workbench软件对重要管道进行有限元分析,获得管道阀不同开度下重要管道内的流速和压力,将其与实际情况进行对比,验证了有限元模型的有效性,并分析开度对管道流通情况的影响。为提高对阀门开度的控制能力,提出了一种改进GWO-BP算法优化PID控制(IGWO-BP-PID)算法对管道阀开度进行控制,通过有限元方法进行大量实验,为智能控制算法提供数据集,通过仿真实验验证了该控制方式能有效提高对污水阀门的控制能力。 展开更多
关键词 污水处理 阀门控制系统 流体仿真 PID算法
在线阅读 下载PDF
基于IGWO-BP-PID的热电制冷器温度控制方法 被引量:2
3
作者 徐晓钦 陈志明 +2 位作者 袁粤杨 沈萍 张镜洋 《兵器装备工程学报》 北大核心 2025年第2期236-243,共8页
针对热电制冷器在温度控制过程出现超调量较大、误差较大等问题,提出一种基于改进型灰狼算法优化的BP神经网络动态整定PID控制参数的方法。在所提方法中使用差分进化法则对灰狼算法进行改进,使用经改进型灰狼算法优化后的BP神经网络对PI... 针对热电制冷器在温度控制过程出现超调量较大、误差较大等问题,提出一种基于改进型灰狼算法优化的BP神经网络动态整定PID控制参数的方法。在所提方法中使用差分进化法则对灰狼算法进行改进,使用经改进型灰狼算法优化后的BP神经网络对PID控制参数进行自适应调整。为验证该方法的有效性,对算法进行仿真并与Ziegler-Nichols调试法以及粒子群优化法进行控制效果对比。仿真结果表明,在连续实现1、5、10℃的温度目标过程中,所提方法相较于Ziegler-Nichols调试法、粒子群优化法在到温时间上分别减小了40.19%、1.54%,在超调量上分别减少了87.55%、69.14%,在稳态误差上分别减少了88.54%、67.23%。此外,在跟踪正弦函数目标的对比结果也进一步证实基于IGWO-BP-PID控制方法的优越性。所提方法可以快速、高精度地解决热电制冷器温度控制问题。 展开更多
关键词 温度控制 热电制冷器 PID参数整定 BP算法 改进GWO算法
在线阅读 下载PDF
基于改进BP-PID的塔机分布式泵控同步系统研究
4
作者 王子路 殷晨波 +2 位作者 马伟 胡从裕 笪文闯 《机床与液压》 北大核心 2025年第19期79-84,共6页
为解决传统的单缸塔式起重机在顶升过程中抗干扰性差和安全性低的问题,因泵控系统能量效率高、压力损失低,更适合高精度同步控制,提出一种泵控分布式液压回路系统实现双液压缸的同步控制。该系统采用交叉耦合控制策略,并结合改进的BP-PI... 为解决传统的单缸塔式起重机在顶升过程中抗干扰性差和安全性低的问题,因泵控系统能量效率高、压力损失低,更适合高精度同步控制,提出一种泵控分布式液压回路系统实现双液压缸的同步控制。该系统采用交叉耦合控制策略,并结合改进的BP-PID控制方法,以提升同步精度和动态响应性能。将改进BP-PID与传统PID和模糊PID对比,通过AMESim/Simulink进行联合仿真分析。结果表明:相较于传统PID控制器,改进BP-PID达到稳态的时间缩短了49.88%,稳态误差降低了0.07 mm,增强了单缸系统的响应速度与鲁棒性;与模糊PID算法相比,改进BP-PID达到稳定时间缩短了49.18%,稳态误差降低了0.04 mm;双缸最大同步误差为1.49 mm,稳定后降至0.18 mm,有效提高了系统的抗干扰能力、鲁棒性和安全性。 展开更多
关键词 塔机 分布式泵控系统 同步控制 改进bp-pid方法 交叉耦合
在线阅读 下载PDF
基于BP-PID改进的噪声稳健控制方法
5
作者 邹晶晶 《计算技术与自动化》 2025年第2期66-73,共8页
针对BP-PID控制器的控制性能受参数初值影响大、易陷入局部极值、对噪声敏感,且低信噪比条件下控制稳定性差等问题,提出了一种基于改进果蝇优化算法(Improved Fruit Fly Optimization Algorithm,IFOA)和径向基神经网络-卡尔曼滤波(Radia... 针对BP-PID控制器的控制性能受参数初值影响大、易陷入局部极值、对噪声敏感,且低信噪比条件下控制稳定性差等问题,提出了一种基于改进果蝇优化算法(Improved Fruit Fly Optimization Algorithm,IFOA)和径向基神经网络-卡尔曼滤波(Radial Basis Function Network-Kalman Filter,RBF-KF)的噪声稳健BP-PID控制方法。首先提出了一种IFOA随机搜索算法对BP-PID初值进行全局寻优,自动获得全局最优解,提升系统控制精度。然后利用所提RBF-KF对观测数据进行滤波平滑,降低量测和控制噪声对系统的影响,提升低信噪比条件下的控制稳定性。基于某智能车车速控制真实数据开展试验,结果表明,所提方法相对于传统方法控制精度提升超过50%,控制稳定性提升超过60%,并且在低信噪比条件下优势更加明显,更适合实际工程应用场景。 展开更多
关键词 bp-pid 车速控制 果蝇优化算法 噪声稳健 卡尔曼滤波
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
6
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
7
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
基于BP-PID的全自动土地覆膜机控制系统设计
8
作者 聂子旭 张艳丽 +4 位作者 邢晨泰 孙长泽 段雯蒂 田金亮 李少华 《农机使用与维修》 2025年第5期37-40,共4页
针对传统土地覆膜作业中存在的质量不稳定、效率低等问题,设计了一种基于BP-PID的全自动土地覆膜机控制系统。该系统以PLC为核心,结合云平台作为可视化窗口和远程控制终端,实现任务调度、故障诊断和状态显示等功能。采用4G通讯和云计算... 针对传统土地覆膜作业中存在的质量不稳定、效率低等问题,设计了一种基于BP-PID的全自动土地覆膜机控制系统。该系统以PLC为核心,结合云平台作为可视化窗口和远程控制终端,实现任务调度、故障诊断和状态显示等功能。采用4G通讯和云计算技术,实时收集和处理各传感器数据。仿真分析表明,BP-PID控制相比于传统PID控制,最大超调量和响应时间性能指标上表现更优。系统测试表明,该系统有效提高了覆膜作业的效率和质量,满足农业机械智能运行需求。 展开更多
关键词 PLC 土地覆膜机 bp-pid 云平台
在线阅读 下载PDF
基于蚁群优化算法的BP-PID主动悬架控制策略研究
9
作者 安鑫凯 赵俊生 +2 位作者 王禹 支佳丽 王淋 《机械设计与制造工程》 2025年第5期87-93,共7页
针对车辆行驶过程中稳定性和乘坐舒适性差的问题,提出了基于蚁群优化(ACO)算法的BP-PID主动悬架控制策略。构建了1/4车辆主动悬架的二自由度动力学模型,对车辆悬架系统进行了仿真研究;建立减速带路面激励模型与B级随机路面激励模型,对AC... 针对车辆行驶过程中稳定性和乘坐舒适性差的问题,提出了基于蚁群优化(ACO)算法的BP-PID主动悬架控制策略。构建了1/4车辆主动悬架的二自由度动力学模型,对车辆悬架系统进行了仿真研究;建立减速带路面激励模型与B级随机路面激励模型,对ACO-BP-PID控制策略进行仿真验证。结果表明:悬架动挠度与车身加速度、轮胎动行程间存在冲突,与BP-PID控制及被动悬架相比,所提出的ACO-BP-PID悬架控制策略可以保证悬架动挠度在合理范围的情况下,汽车主动悬架车身加速度和轮胎动行程有显著的改善,车辆的乘坐舒适性与操作稳定性提高,有更好的抗扰动能力。 展开更多
关键词 主动悬架 蚁群优化算法 BP神经网络 PID控制
在线阅读 下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
10
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
基于BP-PID控制的燃料组件弹簧柔性力控打磨技术研究
11
作者 黄洋 彭柯瑞 +2 位作者 孙剑 彭必友 周海洋 《自动化应用》 2025年第3期81-85,88,共6页
针对燃料组件弹簧现有打磨方式存在的效率低下和质量不稳定问题,研究了一种基于BP-PID控制策略的燃料组件弹簧柔性力控打磨技术,旨在提高打磨过程的稳定性和打磨质量。通过模拟仿真和实验验证,证明了该方法在提高打磨精度、效率和质量... 针对燃料组件弹簧现有打磨方式存在的效率低下和质量不稳定问题,研究了一种基于BP-PID控制策略的燃料组件弹簧柔性力控打磨技术,旨在提高打磨过程的稳定性和打磨质量。通过模拟仿真和实验验证,证明了该方法在提高打磨精度、效率和质量等方面的有效性和优越性。结果表明,与传统的PID控制相比,基于BP-PID的控制策略的精度分别提高了10.53%和15.97%,实际打磨效率也平均提高了97.99%。该研究为燃料组件弹簧的高精度表面处理提供了新的技术支持,同时也显示出自动化打磨技术在该领域进一步推广的潜力。 展开更多
关键词 燃料组件弹簧 柔性力控 打磨技术 bp-pid控制
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
12
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
13
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
基于BP-PID的采煤机自适应调高控制系统研究
14
作者 白鑫 杨浩 +1 位作者 张阳辉 王民 《工矿自动化》 北大核心 2025年第S1期106-108,共3页
针对采煤机滚筒调高问题,提出了一种基于BP神经网络优化的PID控制算法。建立了采煤机自适应调高控制系统的液压模型和运动学模型,利用BP神经网络的自学习能力动态调整PID控制器参数,实现滚筒高度的精准自适应控制。实验表明,该算法的控... 针对采煤机滚筒调高问题,提出了一种基于BP神经网络优化的PID控制算法。建立了采煤机自适应调高控制系统的液压模型和运动学模型,利用BP神经网络的自学习能力动态调整PID控制器参数,实现滚筒高度的精准自适应控制。实验表明,该算法的控制超调量、响应时间、稳态误差分别为6%,2.5 s,±3 mm,分别较传统PID控制降低67%,41%,80%,可显著提升复杂工况下的系统鲁棒性。实际应用验证了系统控制精度高、节能效果好,具有工程实用价值。 展开更多
关键词 采煤机滚筒调高 自适应调高控制 bp-pid
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
15
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
16
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
17
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
18
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
19
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
A Class of Parallel Algorithm for Solving Low-rank Tensor Completion
20
作者 LIU Tingyan WEN Ruiping 《应用数学》 北大核心 2025年第4期1134-1144,共11页
In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice ... In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision. 展开更多
关键词 Tensor completion Low-rank CONVERGENCE Parallel algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部