Poly(p-phenylene-2,6-benzobisoxazole)(PBO) fibers possess excellent dielectric, mechanical properties and heat resistance. However, the surface of PBO fibers is smooth and highly chemical inert, resulting in poor inte...Poly(p-phenylene-2,6-benzobisoxazole)(PBO) fibers possess excellent dielectric, mechanical properties and heat resistance. However, the surface of PBO fibers is smooth and highly chemical inert, resulting in poor interfacial compatibility to polymer matrix, which severely limits its wider application in high-performance fiber-reinforced resin matrix composites. In this work, random copolymers(P(S-co-BCB-co-MMA)) containing benzocyclobutene in the side-chain were synthesized by reversible addition-fragmentation chain transfer(RAFT) polymerization, which were then utilized to form dense random copolymer membrane on the surface of PBO fibers by thermally cross-linking at 250 °C(PBO@P fibers). Four kinds of synthesized P(S-co-BCB-co-MMA) with different number-average molar mass(Mn) were well controlled and possessed narrow dispersity.When the Mnwas 32300, the surface roughness of PBO@P fibers was increased from 11 nm(PBO fibers) to 39 nm. In addition, PBO@P fibers presented the optimal interfacial compatibility with bisphenol A cyanate(BADCy) resins. And the single fiber pull-out strength of PBO@P fibers/BADCy micro-composites was 4.5 MPa, increasing by 45.2% in comparison with that of PBO fibers/BADCy micro-composites(3.1 MPa). Meantime, PBO@P fibers still retained excellent tensile strength(about 5.1 GPa). Overall, this work illustrates a simple and efficient surface functionalization method, which would provide a strong theoretical basis and technical support for controlling the surface structure & chemistry of inert substrates.展开更多
Bisphenol A dicyanate ester resins modified by fluorine-containing liquid crystal compound(LCFE)are applied as polymer matrix(LCFE-BADCy),poly(p-phenylene-2,6-benzobisoxazole)(PBO)fibers as rein-forcements,and fluorin...Bisphenol A dicyanate ester resins modified by fluorine-containing liquid crystal compound(LCFE)are applied as polymer matrix(LCFE-BADCy),poly(p-phenylene-2,6-benzobisoxazole)(PBO)fibers as rein-forcements,and fluorine/adamantane PBO precursor(pre FABPBO)as interfacial compatibilizer to prepare the corresponding PBO fibers/FABPBO/LCFE-BADCy wave-transparent laminated composites.LCFE could improve the order degree of BADCy cured network,in favor of enhancing the wave-transparent perfor-mance,mechanical properties,and intrinsic thermal conductivity.The dielectric constant and dielectric loss of PBO fibers/FABPBO/LCFE-BADCy composites are highly temperature(25–200℃)and frequency(10^(4)–10^(7) Hz and 8.2–12.4 GHz)stable with the value of 2.49 and 0.003 under 10^(6) Hz at 25℃,and the corresponding wave transmission efficiency is 95.0%,higher than that of 92.5%for PBO fibers/BADCy com-posites.The interlamellar shear strength and flexural strength are respectively 50.7 MPa and 682.5 MPa,38.1%and 16.2%higher than those of PBO fibers/BADCy composites.Besides,the volume resistivity,breakdown voltage,heat resistance index,glass transition temperature,flame retardant grade,and ul-timate oxygen index of PBO fibers/FABPBO/LCFE-BADCy composites are respectively 5.3×10^(15)Ωcm,29.75 kV/mm,217.2℃,245.7℃,V-1 grade,and 33.6%,expected to be performed as a new generation of“lightweight/loading/wave-transparent”electromagnetic window materials in advanced military weapons and civil communication base station.展开更多
A block copolymer of PDMS-b-PGMA is synthesized by polymerizing glycidyl methacrylate(GMA)via reversible addition-fragmentation chain transfer(RAFT)polymerization applying a polydimethylsiloxane(PDMS)based macro-RAFT ...A block copolymer of PDMS-b-PGMA is synthesized by polymerizing glycidyl methacrylate(GMA)via reversible addition-fragmentation chain transfer(RAFT)polymerization applying a polydimethylsiloxane(PDMS)based macro-RAFT agent,which is then performed to functionalize the quartz fibers(QFs@PDMS-b-PGMA)via a simple coating process.Finally,the QFs@PDMS-b-PGMA/bisphenol A dicyanate ester(BADCy)wave-transparent laminated composites are fabricated by high-temperature molding.Nuclear magnetic resonance(NMR)spectroscopy,Fourier transform infrared(FT-IR)spectroscopy and size ex-clusion chromatography(SEC)demonstrate the successful preparation of PDMS-b-PGMA with expected structure.When the molar mass and coating amount of PDMS-b-PGMA are respectively 8100 g/mol and 2.0 wt.%,QFs@PDMS-b-PGMA/BADCy wave-transparent laminated composites present optimal mechan-ical properties and wave-transparent performance.The interlaminar shear strength(ILSS)and flexural strength are 53.6 and 552.0 MPa,respectively.Meanwhile,the dielectric constant and dielectric loss val-ues are 2.61 and 0.0028 at 1 MHz(wave transmittance of 93.8%),showing good stability at different frequencies(102-106 Hz and 8.4-12.4 GHz)and temperatures(25-250℃).展开更多
基金support and funding from National Scientific Research ProjectSpace Supporting Fund from China Aerospace Science and Industry Corporation (2019-HT-XG)+1 种基金Fundamental Research Funds for the Central Universities (310201911qd003)China Postdoctoral Science Foundation (2019M653735)。
文摘Poly(p-phenylene-2,6-benzobisoxazole)(PBO) fibers possess excellent dielectric, mechanical properties and heat resistance. However, the surface of PBO fibers is smooth and highly chemical inert, resulting in poor interfacial compatibility to polymer matrix, which severely limits its wider application in high-performance fiber-reinforced resin matrix composites. In this work, random copolymers(P(S-co-BCB-co-MMA)) containing benzocyclobutene in the side-chain were synthesized by reversible addition-fragmentation chain transfer(RAFT) polymerization, which were then utilized to form dense random copolymer membrane on the surface of PBO fibers by thermally cross-linking at 250 °C(PBO@P fibers). Four kinds of synthesized P(S-co-BCB-co-MMA) with different number-average molar mass(Mn) were well controlled and possessed narrow dispersity.When the Mnwas 32300, the surface roughness of PBO@P fibers was increased from 11 nm(PBO fibers) to 39 nm. In addition, PBO@P fibers presented the optimal interfacial compatibility with bisphenol A cyanate(BADCy) resins. And the single fiber pull-out strength of PBO@P fibers/BADCy micro-composites was 4.5 MPa, increasing by 45.2% in comparison with that of PBO fibers/BADCy micro-composites(3.1 MPa). Meantime, PBO@P fibers still retained excellent tensile strength(about 5.1 GPa). Overall, this work illustrates a simple and efficient surface functionalization method, which would provide a strong theoretical basis and technical support for controlling the surface structure & chemistry of inert substrates.
基金The authors are grateful for the support and funding from National Scientific Research Project(Basis Strengthening Plan)State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202103).
文摘Bisphenol A dicyanate ester resins modified by fluorine-containing liquid crystal compound(LCFE)are applied as polymer matrix(LCFE-BADCy),poly(p-phenylene-2,6-benzobisoxazole)(PBO)fibers as rein-forcements,and fluorine/adamantane PBO precursor(pre FABPBO)as interfacial compatibilizer to prepare the corresponding PBO fibers/FABPBO/LCFE-BADCy wave-transparent laminated composites.LCFE could improve the order degree of BADCy cured network,in favor of enhancing the wave-transparent perfor-mance,mechanical properties,and intrinsic thermal conductivity.The dielectric constant and dielectric loss of PBO fibers/FABPBO/LCFE-BADCy composites are highly temperature(25–200℃)and frequency(10^(4)–10^(7) Hz and 8.2–12.4 GHz)stable with the value of 2.49 and 0.003 under 10^(6) Hz at 25℃,and the corresponding wave transmission efficiency is 95.0%,higher than that of 92.5%for PBO fibers/BADCy com-posites.The interlamellar shear strength and flexural strength are respectively 50.7 MPa and 682.5 MPa,38.1%and 16.2%higher than those of PBO fibers/BADCy composites.Besides,the volume resistivity,breakdown voltage,heat resistance index,glass transition temperature,flame retardant grade,and ul-timate oxygen index of PBO fibers/FABPBO/LCFE-BADCy composites are respectively 5.3×10^(15)Ωcm,29.75 kV/mm,217.2℃,245.7℃,V-1 grade,and 33.6%,expected to be performed as a new generation of“lightweight/loading/wave-transparent”electromagnetic window materials in advanced military weapons and civil communication base station.
文摘A block copolymer of PDMS-b-PGMA is synthesized by polymerizing glycidyl methacrylate(GMA)via reversible addition-fragmentation chain transfer(RAFT)polymerization applying a polydimethylsiloxane(PDMS)based macro-RAFT agent,which is then performed to functionalize the quartz fibers(QFs@PDMS-b-PGMA)via a simple coating process.Finally,the QFs@PDMS-b-PGMA/bisphenol A dicyanate ester(BADCy)wave-transparent laminated composites are fabricated by high-temperature molding.Nuclear magnetic resonance(NMR)spectroscopy,Fourier transform infrared(FT-IR)spectroscopy and size ex-clusion chromatography(SEC)demonstrate the successful preparation of PDMS-b-PGMA with expected structure.When the molar mass and coating amount of PDMS-b-PGMA are respectively 8100 g/mol and 2.0 wt.%,QFs@PDMS-b-PGMA/BADCy wave-transparent laminated composites present optimal mechan-ical properties and wave-transparent performance.The interlaminar shear strength(ILSS)and flexural strength are 53.6 and 552.0 MPa,respectively.Meanwhile,the dielectric constant and dielectric loss val-ues are 2.61 and 0.0028 at 1 MHz(wave transmittance of 93.8%),showing good stability at different frequencies(102-106 Hz and 8.4-12.4 GHz)and temperatures(25-250℃).