期刊文献+
共找到3,496篇文章
< 1 2 175 >
每页显示 20 50 100
基于多尺度健康因子-BEAST分解和SARIMA模型结合的锂离子电池剩余使用寿命预测
1
作者 姚芳 韩永康 +2 位作者 李谦 汤雨 张正宣 《天津大学学报(自然科学与工程技术版)》 北大核心 2026年第1期77-89,共13页
锂离子电池的剩余使用寿命(RUL)预测对电池管理和安全性至关重要.现有的RUL预测方法多依赖大量历史数据,且在复杂工况下精度较低,计算负担重.为解决这些问题,本文结合健康因子(HI)、贝叶斯时序分解估计器(BEAST)和季节性差分自回归移动... 锂离子电池的剩余使用寿命(RUL)预测对电池管理和安全性至关重要.现有的RUL预测方法多依赖大量历史数据,且在复杂工况下精度较低,计算负担重.为解决这些问题,本文结合健康因子(HI)、贝叶斯时序分解估计器(BEAST)和季节性差分自回归移动平均模型(SARIMA),提出了一种新颖的RUL预测方法.与传统方法不同,本文创新性地采用HI替代最大可放电容量,能够更精确地反映电池衰退过程;同时,结合贝叶斯时序分解估计器对HI进行分解与重构,提高了预测精度,减少了对大量历史数据的依赖;最后,利用季节性差分自回归移动平均模型对电池衰退的时序数据进行建模,显著提高了预测精度和计算效率.实验结果表明,以动态工况电池(CS#7)为例,所提方法在电池衰减5%时,最大相对误差小于2%,衰减10%时小于4.31%;相比LSTM和LSSVM方法,本文方法在MAE上分别降低了16.6%和25.9%,计算效率分别提高了55.2%和22.8%. 展开更多
关键词 锂离子电池 剩余使用寿命 健康因子 BEAST分解 SARIMA模型
在线阅读 下载PDF
基于GSWOA-VMD-AR模型的滚动轴承特征提取方法
2
作者 张雯雯 张义民 张凯 《机械工程师》 2026年第1期55-59,共5页
针对传统故障诊断方法在滚动轴承的变载荷,变转速环境和多故障耦合工况下存在提取特征困难、诊断准确率低的问题,提出了一种基于全局搜寻策略鲸鱼优化算法(GSWOA)优化变分模态分解(VMD)和自回归(AR)模型参数的故障特征提取方法。首先,采... 针对传统故障诊断方法在滚动轴承的变载荷,变转速环境和多故障耦合工况下存在提取特征困难、诊断准确率低的问题,提出了一种基于全局搜寻策略鲸鱼优化算法(GSWOA)优化变分模态分解(VMD)和自回归(AR)模型参数的故障特征提取方法。首先,采用GSWOA优化VMD参数以获得最佳的模态分解个数和惩罚因子,然后对20类多故障耦合振动信号进行分解,得到一系列平稳分量信号。其次,对一系列分量信号建立AR模型提取特征向量。最后,将特征向量输入到支持向量机(SVM)中进行轴承故障诊断的模式识别。与其他3种特征提取方法进行对比,该方法能够对多故障耦合的轴承故障分类达到100%的准确率,验证了其有效性和优越性。 展开更多
关键词 变分模态分解 自回归模型 全局搜寻策略鲸鱼优化算法 特征提取 滚动轴承
在线阅读 下载PDF
优化组合预测模型在手足口病发病预测中的应用
3
作者 田伟杰 高倩 +2 位作者 杨锟 赵志荣 陈健 《公共卫生与预防医学》 2026年第1期58-62,共5页
目的针对2020—2023年手足口病发病异常波动导致的建模预测问题,探索疫情后手足口病发病的科学精准预测方法。方法使用季节指数对数据进行前处理,分别用传统的季节性自回归移动平均(SARIMA)模型、奇异谱分析(SSA)-ARIMA模型、ARIMA-长... 目的针对2020—2023年手足口病发病异常波动导致的建模预测问题,探索疫情后手足口病发病的科学精准预测方法。方法使用季节指数对数据进行前处理,分别用传统的季节性自回归移动平均(SARIMA)模型、奇异谱分析(SSA)-ARIMA模型、ARIMA-长短期记忆递归神经网络(LSTM)模型和SSA-ARIMA-LSTM模型,拟合2013—2023年的发病情况,预测2024年手足口病发病情况,收集的真实的2024年数据作为测试集,比较模型的预测性能。结果构建的模型拟合性能方面,ARIMA模型MAE为107.50、RMSE为144.53,SSA-ARIMA模型MAE为2.84、RMSE为4.33,ARIMA-LSTM模型MAE为99.46、RMSE为131.59,SSA-ARIMA-LSTM模型MAE为96.35、RMSE为132.13;模型预测性能方面,ARIMA模型MAE为151.64、RMSE为146.70,SSA-ARIMA模型MAE为41.22、RMSE为57.01,ARIMA-LSTM模型MAE为220.75、RMSE为257.89,SSA-ARIMA-LSTM模型MAE为58.83、RMSE为72.06。结论SSA-ARIMA模型的拟合度最好,预测准确度最高,适用于对手足口病的发病趋势进行预测分析。 展开更多
关键词 手足口病 自回归移动平均模型 奇异谱分析 长短期记忆递归神经网络模型
原文传递
基于SARIMA模型的血液内科医院感染发病率及日发病率预测研究
4
作者 李晶晶 曾子强 +3 位作者 李凌竹 查筑红 陈敏 曾妮 《贵州医药》 2026年第1期20-25,共6页
目的 利用季节性差分自回归滑动平均(SARIMA)模型预测血液内科医院感染发病率及日发病率,为预防控制医院感染提供参考。方法 以某三甲医院血液内科2018年1月—2022年6月医院感染发病率及日发病率数据作为训练集分别构建SARIMA模型,2022... 目的 利用季节性差分自回归滑动平均(SARIMA)模型预测血液内科医院感染发病率及日发病率,为预防控制医院感染提供参考。方法 以某三甲医院血液内科2018年1月—2022年6月医院感染发病率及日发病率数据作为训练集分别构建SARIMA模型,2022年7—12月数据作为验证集,通过平均绝对百分比误差(MAPE)、平均绝对比例误差(MASE)以及均方根误差(RMSE)比较并评价模型预测效果。结果 SARIMA(2,1,0)(1,1,1)_(12)为医院感染发病率最佳预测模型,SARIMA(2,1,1)(2,1,1)_(12)为医院感染日发病率最佳预测模型,实际值均在预测值95%CI范围内。发病率模型MAPE、MASE、MRSE为30.17%、0.75、0.76,日发病率模型MAPE、MASE、MRSE分别为21.18%、0.55、0.73。结论 SARIMA模型可用于血液内科医院感染发病率及日发病率预测,为医院感染防控提供参考依据。 展开更多
关键词 医院感染 季节性差分自回归滑动平均模型 血液内科 预测
暂未订购
基于ARIMA-LSTM模型的MSWI过程CO_(2)排放浓度多步预测
5
作者 汤健 王子 +2 位作者 夏恒 王天峥 乔俊飞 《北京工业大学学报》 北大核心 2026年第2期175-188,共14页
针对城市固废焚烧(municipal solid waste incineration,MSWI)过程CO_(2)排放兼具线性趋势与非线性波动的复杂动态特性,现有单一预测难以准确拟合的问题,提出基于差分整合移动平均自回归-长短期记忆(autoregressive integrated moving a... 针对城市固废焚烧(municipal solid waste incineration,MSWI)过程CO_(2)排放兼具线性趋势与非线性波动的复杂动态特性,现有单一预测难以准确拟合的问题,提出基于差分整合移动平均自回归-长短期记忆(autoregressive integrated moving average-long short-term memory,ARIMA-LSTM)模型的CO_(2)排放浓度的多步预测方法。首先,采用ARIMA算法构建线性主模型以进行CO_(2)排放浓度预测;然后,以主模型的预测残差为真值,采用LSTM算法构建非线性补偿模型;最后,将主模型和补偿模型的预测值进行组合得到超前多步的预测结果。基于北京某MSWI工厂的真实CO_(2)数据集验证了所构建混合模型的有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) CO_(2)排放 多步预测 差分整合移动平均自回归模型 长短期记忆(long short-term memory LSTM)网络 混合模型
在线阅读 下载PDF
Time-Series Forecasting Using Autoregression Enhanced k-Nearest Neighbors Method 被引量:1
6
作者 潘峰 赵海波 刘华山 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第4期434-442,共9页
This study proposes two metrics using the nearest neighbors method to improve the accuracy of time-series forecasting. These two metrics can be treated as a hybrid forecasting approach to combine linear and non-linear... This study proposes two metrics using the nearest neighbors method to improve the accuracy of time-series forecasting. These two metrics can be treated as a hybrid forecasting approach to combine linear and non-linear forecasting techniques. One metric redefines the distance in k-nearest neighbors based on the coefficients of autoregression (AR) in time series. Meanwhile, an improvement to Kulesh's adaptive metrics in the nearest neighbors is also presented. To evaluate the performance of the two proposed metrics, three types of time-series data, namely deterministic synthetic data, chaotic time-series data and real time-series data, are predicted. Experimental results show the superiority of the proposed AR-enhanced k-nearest neighbors methods to the traditional k-nearest neighbors metric and Kulesh's adaptive metrics. 展开更多
关键词 time series forecasting nearest neighbors method autoregression (AR) metrics
原文传递
Threshold autoregression models for forecasting El Nino events
7
作者 Pu Shuzhen and Yu Huiling First Institute of Oceanography, State Oceanic Administration, Qingdao, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1990年第1期61-67,共7页
-In this paper, monthly mean SST data in a large area are used. After the spacial average of the data is carried out and the secular monthly means are substracted, a time series (Jan. 1951-Dec. 1985) of SST anomalies ... -In this paper, monthly mean SST data in a large area are used. After the spacial average of the data is carried out and the secular monthly means are substracted, a time series (Jan. 1951-Dec. 1985) of SST anomalies of the cold tongue water area in the eastern tropical Pacific Ocean is obtained. On the basis of the time series, an autoregression model, a self-exciting threshold autoregression model and an open loop autoregression model are developed respectively. The interannual variations are simulated by means of those models. The simulation results show that all the three models have made very good hindcasting for the nine El Nino events since 1951. In order to test the reliability of the open loop threshold model, extrapolated forecast was made for the period of Jan. 1986-Feb. 1987. It can be seen from the forecasting that the model could forecast well the beginning and strengthening stages of the recent El Nino event (1986-1987). Correlation coefficients of the estimations to observations are respectively 0. 84, 0. 88 and 0. 89. It is obvious that all the models work well and the open loop threshold one is the best. So the open loop threshold autoregression model is a useful tool for monitoring the SSTinterannual variation of the cold tongue water area in the Eastern Equatorial Pacific Ocean and for estimating the El Nino strength. 展开更多
关键词 Nino EI SSTA Threshold autoregression models for forecasting El Nino events EL
在线阅读 下载PDF
Network autoregression model with grouped factor structures
8
作者 ZHANG Zhiyuan ZHU Xuening 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2023年第5期24-37,共14页
Network autoregression and factor model are effective methods for modeling network time series data.In this study,we propose a network autoregression model with a factor structure that incorporates a latent group stru... Network autoregression and factor model are effective methods for modeling network time series data.In this study,we propose a network autoregression model with a factor structure that incorporates a latent group structure to address nodal heterogeneity within the network.An iterative algorithm is employed to minimize a least-squares objective function,allowing for simultaneous estimation of both the parameters and the group structure.To determine the unknown number of groups and factors,a PIC criterion is introduced.Additionally,statistical inference of the estimated parameters is presented.To assess the validity of the proposed estimation and inference procedures,we conduct extensive numerical studies.We also demonstrate the utility of our model using a stock dataset obtained from the Chinese A-Share stock market. 展开更多
关键词 network autoregression factor structure HETEROGENEITY latent group structure network time series
在线阅读 下载PDF
Resilient back propagation神经网络模型与autoregression型在径流预报中的比较研究
9
作者 刘畅 王栋 陈景雅 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期666-673,共8页
本文以黄河利津站和浙江省白溪水库的月径流水文序列为例,在自相关分析的基础上,建立自回归autoregression模型,并参照其结构建立了相应的resilient back propagation神经网络预报模型.比较结果显示:(1)resilient back propagation模型... 本文以黄河利津站和浙江省白溪水库的月径流水文序列为例,在自相关分析的基础上,建立自回归autoregression模型,并参照其结构建立了相应的resilient back propagation神经网络预报模型.比较结果显示:(1)resilient back propagation模型的模拟预报结果与序列的自相关性有密切关系;(2)当序列有较好的自相关性时,可参照autoregression模型建立相应的resilient back propagation模型;(3)与传统autoregression模型相比,resilient back propagation模型能取得更高的预报精度;且随着预报步长增加,resilient back propagation模型的优势更加明显. 展开更多
关键词 水文时间序列 弹性back propagation神经网络 自回归模型 月径流预报
在线阅读 下载PDF
Utilizing the Vector Autoregression Model (VAR) for Short-Term Solar Irradiance Forecasting
10
作者 Farah Z. Najdawi Ruben Villarreal 《Energy and Power Engineering》 2023年第11期353-362,共10页
Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector A... Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector Autoregression (VAR) model to forecast solar irradiance levels and weather characteristics in the San Francisco Bay Area. The results demonstrate a correlation between predicted and actual solar irradiance, indicating the effectiveness of the VAR model for this task. However, the model may not be sufficient for this region due to the requirement of additional weather features to reduce disparities between predictions and actual observations. Additionally, the current lag order in the model is relatively low, limiting its ability to capture all relevant information from past observations. As a result, the model’s forecasting capability is limited to short-term horizons, with a maximum horizon of four hours. 展开更多
关键词 Vector autoregression Model Hyperparameter Parameters Augmented Dickey Fuller Durbin Watson’s Statistics
在线阅读 下载PDF
考虑极端天气的新型电力系统智能化调度方法 被引量:2
11
作者 张勇 孙雁斌 +6 位作者 颜融 肖亮 范展滔 方必武 黎立丰 杨再敏 蒙文川 《电力科学与技术学报》 北大核心 2025年第1期163-172,共10页
随着以新能源为基础的新型电力系统建设的不断推进,近年来风电、光伏等新能源大规模密集接入系统,这虽然为实现“双碳”目标奠定了坚实的基础,但同时也导致极端天气下新型电力系统调度运行面临的挑战不断增大,其中最易出现的问题是风电... 随着以新能源为基础的新型电力系统建设的不断推进,近年来风电、光伏等新能源大规模密集接入系统,这虽然为实现“双碳”目标奠定了坚实的基础,但同时也导致极端天气下新型电力系统调度运行面临的挑战不断增大,其中最易出现的问题是风电爬坡事件概率大幅提升,不仅会造成系统频率的大幅频繁波动,还会影响电力电量平衡,严重威胁系统安全稳定运行。为此,在统计分析风电爬坡事件的基础上,提出基于深度自回归(deep auto-regressive, DeepAR)模型的风电爬坡事件的预测方法。首先,结合风机功率与风速之间的关系,分析极端天气下风电爬坡事件对电网调度运行的影响,再建立风电爬坡事件物理模型,分析发生风电爬坡事件时的风电功率统计特征;然后,结合深度自回归模型对风电爬坡事件进行功率预测,分析极端天气下的风电出力曲线;最后,结合风电场实测数据验证所提方法的有效性。验证表明:采用所提方法可提前精准定位极端天气环境下风电爬坡事件出现概率,预期将极大改善未来新型电力系统调度运行面临的不确定性。 展开更多
关键词 新型电力系统 风力发电 极端天气 风电爬坡 深度自回归模型
在线阅读 下载PDF
基于ARIMA-LSTM的矿区地表沉降预测方法 被引量:6
12
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
基于自回归移动平均模型与Joinpoint模型的血吸虫病防治相关文献发表量时间趋势分析 被引量:1
13
作者 朱宏儒 邓瑶 +4 位作者 戎毅 钱熠礼 潘丽 邹言峥 陶璐秋 《预防医学情报杂志》 2025年第3期409-416,共8页
目的探索基于自回归移动平均模型(autoregressive integrated moving average,ARIMA)与joinpoint模型分析血吸虫病防治相关文献发表量变化趋势,并反映血吸虫病研究开展情况的可行性。方法以“血吸虫病”和“血吸虫”为检索词检索中国知... 目的探索基于自回归移动平均模型(autoregressive integrated moving average,ARIMA)与joinpoint模型分析血吸虫病防治相关文献发表量变化趋势,并反映血吸虫病研究开展情况的可行性。方法以“血吸虫病”和“血吸虫”为检索词检索中国知网与万方数据库中中文期刊论文与学位论文,以“schistosomiasis”“schistosome”和“schistosoma”为检索词检索PubMed数据库英文文献,时间范围均为1990年1月1日至2019年12月31日。排除重复文献后,统计各年份文献发表量,采用自回归移动平均模型与Joinpoint模型进行建模分析。结果1990—2019年血吸虫病相关中文文献累计95715篇,年均3190.5篇;英文研究文献共18144篇,年均604.8篇。ARIMA(1,2,0)模型可对本研究血吸虫病相关中文和英文文献发表量有效拟合(AR=-0.494、-0.590,t=-2.852、-3.718,P均<0.001;Q=7.185、28.029,P=0.981、0.545)。建立joinpoint模型发现,1990—2019年血吸虫病相关中文文献发表量变化趋势于1995(APC=9.7%,P<0.001)、2003年(APC=4.9%,P<0.001)和2006年(APC=24.3%,P=0.002)出现转折点;英文文献发表量变化趋势于2005、2014年出现转折点,但仅于2005—2014年间为增长趋势(APC=6.2%,P<0.001)。结论ARIMA模型和joinpoint模型均可对文献发表量变化趋势进行建模分析,其中joinpoint模型对识别文献发表量趋势变化情况更具优势。 展开更多
关键词 血吸虫病 文献 时间趋势 自回归移动平均模型 joinpoint模型
原文传递
基于GBD数据库分析与预测中国鼻咽癌疾病负担 被引量:1
14
作者 宋业勋 刘霞静 +1 位作者 张永全 李和清 《中南大学学报(医学版)》 北大核心 2025年第4期675-683,共9页
目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流... 目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流行病学依据。方法:选取年龄标化发病率、病死率、伤残调整寿命年(disability adjusted life year,DALY)率作为疾病负担的评价指标,按照不同年龄、性别、社会人口学指数及其相关危险因素进行分层分析,同时应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和贝叶斯年龄-时期-队列分析模型(Bayesian age-period-cohort,BAPC)将年龄标化发病率预测至2050年。结果:2021年中国鼻咽癌年龄标化发病率、病死率、DALY率分别为3.4/10万、1.5/10万、48.7/10万,均高于同期全球水平。在所有年龄段,中国男性年龄标化发病率、病死率、DALY率均高于女性。中国鼻咽癌的疾病负担从1990至2021年随着社会人口学指数(socio-demographic index,SDI)的增高逐渐降低。中国归因于饮酒、吸烟、职业甲醛暴露的鼻咽癌疾病负担占比均高于全球水平,且在男性中尤为显著。模型预测中国及全球男性、女性、全人群的年龄标化发病率均提示从2022至2050年呈上升趋势。结论:既往30年中国鼻咽癌的疾病负担随着SDI的升高逐渐降低,但仍高于同期全球水平。同时,中国鼻咽癌的年龄标化发病率在未来30年呈上升趋势。中国仍需进一步增加医疗资源的投入以应对鼻咽癌的防控与诊疗,尤其针对高风险男性群体。 展开更多
关键词 鼻咽癌 疾病负担 社会人口学指数 贝叶斯年龄-时期-队列分析模型 差分自回归移动平均模型
暂未订购
基于状态相依的RBF-ARX模型的锂离子电池剩余容量估计方法 被引量:1
15
作者 夏向阳 岳家辉 +4 位作者 曾小勇 刘代飞 陈来恩 吕崇耿 夏永凯 《中国电机工程学报》 北大核心 2025年第2期638-649,I0020,共13页
锂离子电池剩余容量估计是电池管理系统中关键技术之一,也是实现锂离子电池安全稳定运行的前提。针对锂离子电池剩余容量有效估计问题,该文提出带外生输入的自回归模型(radial basis function-autoregressive exogenous,RBF-ARX)的锂离... 锂离子电池剩余容量估计是电池管理系统中关键技术之一,也是实现锂离子电池安全稳定运行的前提。针对锂离子电池剩余容量有效估计问题,该文提出带外生输入的自回归模型(radial basis function-autoregressive exogenous,RBF-ARX)的锂离子电池剩余容量估计方法,利用结构化非线性参数优化方法辨识模型参数,并将“老化信息”与“能量”相结合,基于小波包能量分析从电池充电电流/电压曲线中直接提取能量特征作为新健康特征,采用传递熵对新健康特征进行筛选以构成模型输入,实现锂离子电池剩余容量的有效估计;最后,基于NASA公开的锂离子电池老化数据,通过不同训练/测试样本比例、不同模型展开综合分析。结果表明,所提出的基于状态相依的RBF-ARX模型的锂离子电池剩余容量估计方法与常用的数据驱动方法相比,误差指标中平均绝对误差、平均绝对百分比误差、均方根误差均保持在较低水平,具有良好的估计精度。 展开更多
关键词 锂离子电池 健康特征 传递熵 带外生输入的自回归模型 健康状态
原文传递
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测 被引量:1
16
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
我国公共数字文化服务均衡性效应研究:融合政策工具与VAR模型的实证分析 被引量:1
17
作者 彭丽徽 顾般若 洪闯 《情报科学》 北大核心 2025年第3期99-109,184,共12页
【目的/意义】探析政策工具对我国公共数字文化服务均衡性发展的时序效应,为我国公共数字文化服务政策体系的高质量建设与全面均衡发展提供参考。【方法/过程】收集整理各项时序指标数据并构建相应的评价指标体系,结合2011—2022年我国... 【目的/意义】探析政策工具对我国公共数字文化服务均衡性发展的时序效应,为我国公共数字文化服务政策体系的高质量建设与全面均衡发展提供参考。【方法/过程】收集整理各项时序指标数据并构建相应的评价指标体系,结合2011—2022年我国公共数字文化服务政策文本,以政策工具词频为解释变量、均衡性指数为被解释变量,构建向量自回归模型并进行实证分析。【结果/结论】研究表明:我国公共数字文化服务均衡性发展受到3类政策工具的共同影响。其中,环境型政策工具对公共数字文化服务均衡性发展的推动力随时间增加而增大,需求型政策工具能在短期内推动公共数字文化服务均衡性发展,而供给型政策工具可以在长期内提升我国公共数字文化服务均衡性发展,但在发展中期存在负向影响。【创新/局限】本文探讨了不同类型政策工具对公共数字文化服务均衡性发展的影响机理,未来拟通过文本挖掘方法提高指标选取的准确性。 展开更多
关键词 公共数字文化服务 政策工具 向量自回归模型 均衡性 政策效应
原文传递
双向自回归Transformer与快速傅里叶卷积增强的壁画修复 被引量:1
18
作者 陈永 张世龙 杜婉君 《湖南大学学报(自然科学版)》 北大核心 2025年第4期1-15,共15页
针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer... 针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法. 展开更多
关键词 壁画修复 双向自回归Transformer 掩码语言模型 快速傅里叶卷积 语义增强
在线阅读 下载PDF
基于自回归积分滑动平均模型的无线传感网络通信传输信号延迟消除方法 被引量:2
19
作者 崔蕾 王同 《传感技术学报》 北大核心 2025年第3期543-549,共7页
为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程... 为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程的步骤和约束条件,并以此构建无线传感网络通信传输的优化目标函数,引入免疫克隆蛙跳算法对目标函数进行求解,获取最优的传输方案。仿真分析表明,所提方法的延迟预测误差和端到端延迟误差低于0.01 s,能量消耗最大值为6.4 W,平均丢包率最大值为0.286%。上述结果证明了所提方法可以有效准确预测和消除无线传感网络通信传输信号延迟。 展开更多
关键词 无线传感网络 传输信号 延迟消除 自回归积分滑动平均模型 小波神经网络
在线阅读 下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部