期刊文献+
共找到1,733篇文章
< 1 2 87 >
每页显示 20 50 100
Feature pyramid attention network for audio-visual scene classification
1
作者 Liguang Zhou Yuhongze Zhou +3 位作者 Xiaonan Qi Junjie Hu Tin Lun Lam Yangsheng Xu 《CAAI Transactions on Intelligence Technology》 2025年第2期359-374,共16页
Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and text... Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and textures found in visual images.The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures,inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data.The authors present a feature pyramid attention network(FPANet)for audio-visual scene understanding,which extracts semantically significant characteristics from audio-visual data.The authors’approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module(FPAM).A dimension alignment(DA)strategy is employed to align feature maps from multiple layers,a pyramid spatial attention(PSA)to spatially locate essential regions,and a pyramid channel attention(PCA)to pinpoint significant temporal frames.Experiments on visual scene classification(VSC),audio scene classification(ASC),and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art(SOTA)approaches,with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%.Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals. 展开更多
关键词 dimension alignment feature pyramid attention network pyramid channel attention pyramid spatial attention semantic relevant regions
在线阅读 下载PDF
Development and Initial Validation of the Multi-Dimensional Attention Rating Scale in Highly Educated Adults
2
作者 Xin-Yang Zhang Karen Spruyt +15 位作者 Jia-Yue Si Lin-Lin Zhang Ting-Ting Wu Yan-Nan Liu Di-Ga Gan Yu-Xin Hu Si-Yu Liu Teng Gao Yi Zhong Yao Ge Zhe Li Zi-Yan Lin Yan-Ping Bao Xue-Qin Wang Yu-Feng Wang Lin Lu 《Chinese Medical Sciences Journal》 2025年第2期100-110,I0001,共12页
Objective To report the development,validation,and findings of the Multi-dimensional Attention Rating Scale(MARS),a self-report tool crafted to evaluate six-dimension attention levels.Methods The MARS was developed ba... Objective To report the development,validation,and findings of the Multi-dimensional Attention Rating Scale(MARS),a self-report tool crafted to evaluate six-dimension attention levels.Methods The MARS was developed based on Classical Test Theory(CTT).Totally 202 highly educated healthy adult participants were recruited for reliability and validity tests.Reliability was measured using Cronbach's alpha and test-retest reliability.Structural validity was explored using principal component analysis.Criterion validity was analyzed by correlating MARS scores with the Toronto Hospital Alertness Test(THAT),the Attentional Control Scale(ACS),and the Attention Network Test(ANT).Results The MARS comprises 12 items spanning six distinct dimensions of attention:focused attention,sustained attention,shifting attention,selective attention,divided attention,and response inhibition.As assessed by six experts,the content validation index(CVI)was 0.95,the Cronbach's alpha for the MARS was 0.78,and the test-retest reliability was 0.81.Four factors were identified(cumulative variance contribution rate 68.79%).The total score of MARS was correlated positively with THAT(r=0.60,P<0.01)and ACS(r=0.78,P<0.01)and negatively with ANT's reaction time for alerting(r=−0.31,P=0.049).Conclusion The MARS can reliably and validly assess six-dimension attention levels in real-world settings and is expected to be a new tool for assessing multi-dimensional attention impairments in different mental disorders. 展开更多
关键词 attention attentional Control Scale Toronto Hospital Alertness Test attention Network Test
暂未订购
基于Attention LSTM的中小企业财务风险预测模型
3
作者 张文闻 《中国市场》 2025年第27期147-150,共4页
文章提出了一种基于Attention LSTM的中小企业财务风险预测模型。此模型结合了长短期记忆网络(LSTM)和注意力机制(Attention),有效解读财务时间序列数据,并准确评估各时间段数据对风险预测的重要性。实证研究揭示,对于关键风险因素,如... 文章提出了一种基于Attention LSTM的中小企业财务风险预测模型。此模型结合了长短期记忆网络(LSTM)和注意力机制(Attention),有效解读财务时间序列数据,并准确评估各时间段数据对风险预测的重要性。实证研究揭示,对于关键风险因素,如偿债能力、经营稳定性和盈利能力等,模型表现出优于传统预测方式的精准度。因此,该模型为中小企业提供了一个有效的财务风险预测工具,可以帮助企业及时发现并应对潜在的财务风险,为未来的决策制定提供重要支持。 展开更多
关键词 中小企业 财务风险预测 attention LSTM 模型预测
在线阅读 下载PDF
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
4
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
Marine organism classification method based on hierarchical multi-scale attention mechanism
5
作者 XU Haotian CHENG Yuanzhi +1 位作者 ZHAO Dong XIE Peidong 《Optoelectronics Letters》 2025年第6期354-361,共8页
We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hie... We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification. 展开更多
关键词 integrate information different scales hierarchical multi scale attention lightweight feature extraction focal loss efficientnetv marine organism classification oceanic biological image classification methods convolutional block attention module
原文传递
Caregiver Burden of Children with Attention Deficit/Hyperactivity Disorder(ADHD):A Systematic Review
6
作者 Nadia Amro Lila de Tantillo 《International Journal of Mental Health Promotion》 2025年第5期637-648,共12页
Background Raising a child with attention deficit hyperactivity disorder(ADHD)is a key challenge for the primary caregiver.This systematic review aims to identify major burdens facing the primary caregiver of a child ... Background Raising a child with attention deficit hyperactivity disorder(ADHD)is a key challenge for the primary caregiver.This systematic review aims to identify major burdens facing the primary caregiver of a child with ADHD.Methods The electronic databases CINAHL,PubMed,and Google Scholar were searched for studies published in English from 2017 to 2022 assessing the challenges facing caregivers of a child with ADHD.The Johns Hopkins Nursing Evidence-Based Practice Model was used to assess quality and risk of bias of studies identified for inclusion.Articles were synthesized by evaluating principal themes of burden to caregivers,stress of caregivers,and effectiveness of intervention programs.Results Eleven articles were included in this review and included a total of 2426 participants.Findings revealed that caregivers of children with ADHD have a poor quality of life and high stress levels.Supportive parenting programs can be effective for improved coping and adaptation mechanisms with children with ADHD.However,few interventional studies were identified,increasing potential for bias.No meta-analysis was conducted.Conclusion Caregivers of children with ADHD can benefit from strategies to improve their quality of life and reduce their stress levels.Targeted parenting programs can make a positive difference in the well-being of caregivers and children with ADHD.Additional research is needed to address the evidence-based effectiveness of parenting support programs. 展开更多
关键词 attention deficit hyperactivity disorder(ADHD) CAREGIVERS burden of care mothers attention deficit disorder
暂未订购
Gated Attention-Enhanced Informer
7
作者 Yufeng Zhang 《Journal of Electronic Research and Application》 2025年第5期219-224,共6页
The Informer model leverages its innovative ProbSparse self-attention mechanism to demonstrate significant performance advantages in long-sequence time-series forecasting tasks.However,when confronted with time-series... The Informer model leverages its innovative ProbSparse self-attention mechanism to demonstrate significant performance advantages in long-sequence time-series forecasting tasks.However,when confronted with time-series data exhibiting multi-scale characteristics and substantial noise,the model’s attention mechanism reveals inherent limitations.Specifically,the model is susceptible to interference from local noise or irrelevant patterns,leading to diminished focus on globally critical information and consequently impairing forecasting accuracy.To address this challenge,this study proposes an enhanced architecture that integrates a Gated Attention mechanism into the original Informer framework.This mechanism employs learnable gating functions to dynamically and selectively impose differentiated weighting on crucial temporal segments and discriminative feature dimensions within the input sequence.This adaptive weighting strategy is designed to effectively suppress noise interference while amplifying the capture of core dynamic patterns.Consequently,it substantially strengthens the model’s capability to represent complex temporal dynamics and ultimately elevates its predictive performance. 展开更多
关键词 INFORMER Self-attention Gated attention PREDICTION
在线阅读 下载PDF
VTAN: A Novel Video Transformer Attention-Based Network for Dynamic Sign Language Recognition
8
作者 Ziyang Deng Weidong Min +2 位作者 Qing Han Mengxue Liu Longfei Li 《Computers, Materials & Continua》 2025年第2期2793-2812,共20页
Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dyn... Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dynamic sign language requires identifying keyframes that best represent the signs, and missing these keyframes reduces accuracy. Secondly, some methods do not focus enough on hand regions, which are small within the overall frame, leading to information loss. To address these challenges, we propose a novel Video Transformer Attention-based Network (VTAN) for dynamic sign language recognition. Our approach prioritizes informative frames and hand regions effectively. To tackle the first issue, we designed a keyframe extraction module enhanced by a convolutional autoencoder, which focuses on selecting information-rich frames and eliminating redundant ones from the video sequences. For the second issue, we developed a soft attention-based transformer module that emphasizes extracting features from hand regions, ensuring that the network pays more attention to hand information within sequences. This dual-focus approach improves effective dynamic sign language recognition by addressing the key challenges of identifying critical frames and emphasizing hand regions. Experimental results on two public benchmark datasets demonstrate the effectiveness of our network, outperforming most of the typical methods in sign language recognition tasks. 展开更多
关键词 Dynamic sign language recognition TRANSFORMER soft attention attention-based visual feature aggregation
在线阅读 下载PDF
A Hyperspectral Image Classification Based on Spectral Band Graph Convolutional and Attention⁃Enhanced CNN Joint Network
9
作者 XU Chenjie LI Dan KONG Fanqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期102-120,共19页
Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the... Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the spectral band graph convolutional and attention-enhanced CNN joint network(SGCCN),a novel approach that harnesses the power of spectral band graph convolutions for capturing long-range relationships,utilizes local perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention mechanism to enhance feature extraction.The SGCCN integrates spectral and spatial features through a self-attention fusion network,significantly improving classification accuracy and efficiency.The proposed method outperforms existing techniques,demonstrating its effectiveness in handling the challenges associated with HSI data. 展开更多
关键词 hyperspectral classification spectral band graph convolutional network attention-enhance convolutional network dynamic attention feature extraction feature fusion
在线阅读 下载PDF
Pyramid–MixNet: Integrate Attention into Encoder-Decoder Transformer Framework for Automatic Railway Surface Damage Segmentation
10
作者 Hui Luo Wenqing Li Wei Zeng 《Computers, Materials & Continua》 2025年第7期1567-1580,共14页
Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi... Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems. 展开更多
关键词 Pyramid vision transformer encoder–decoder architecture railway damage segmentation masked multi-head attention mix-attention
在线阅读 下载PDF
A teacher-student based attention network for fine-grainedimage recognition
11
作者 Ang Li Xueyi Zhang +1 位作者 Peilin Li Bin Kang 《Digital Communications and Networks》 2025年第1期52-59,共8页
Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existin... Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existing FGIR works often follow two steps:discriminative sub-region localization and local feature representation.However,these works pay less attention on global context information.They neglect a fact that the subtle visual difference in challenging scenarios can be highlighted through exploiting the spatial relationship among different subregions from a global view point.Therefore,in this paper,we consider both global and local information for FGIR,and propose a collaborative teacher-student strategy to reinforce and unity the two types of information.Our framework is implemented mainly by convolutional neural network,referred to Teacher-Student Based Attention Convolutional Neural Network(T-S-ACNN).For fine-grained local information,we choose the classic Multi-Attention Network(MA-Net)as our baseline,and propose a type of boundary constraint to further reduce background noises in the local attention maps.In this way,the discriminative sub-regions tend to appear in the area occupied by fine-grained objects,leading to more accurate sub-region localization.For fine-grained global information,we design a graph convolution based Global Attention Network(GA-Net),which can combine extracted local attention maps from MA-Net with non-local techniques to explore spatial relationship among subregions.At last,we develop a collaborative teacher-student strategy to adaptively determine the attended roles and optimization modes,so as to enhance the cooperative reinforcement of MA-Net and GA-Net.Extensive experiments on CUB-200-2011,Stanford Cars and FGVC Aircraft datasets illustrate the promising performance of our framework. 展开更多
关键词 Fine-grained image recognition Collaborative teacher-student strategy Multi-attention Global attention
在线阅读 下载PDF
The components of threat-related attentional biases among individuals with different levels of sense of control
12
作者 Shunying Zhao Baojuan Ye +1 位作者 Min Rao Yulan Guo 《Journal of Psychology in Africa》 2025年第4期463-470,共8页
This study investigated how components of threat-related attentional biases are associated with levels of sense of control.Utilizing a using a spatial-cueing paradigm,36 college students with a high sense of control(f... This study investigated how components of threat-related attentional biases are associated with levels of sense of control.Utilizing a using a spatial-cueing paradigm,36 college students with a high sense of control(females=22,Mage=19.44,SD=1.36)and 35 with a low sense of control(females=15,Mage=19.77,SD=1.40)were assigned to task featuring different cue-target intervals(i.e.,50 and 800 ms).The student participants completed the Control Sense Scale,the GAD-7 Anxiety Scale,and the PHQ-9 Patient Health Questionnaire.Data from employing spatial-cueing task procedure,would provide the evidence on any differences in attentional biases toward threat images between the two groups.A repeated measures ANOVA indicated that both groups to exhibit attentional avoidance under the 50 ms interval condition.However,individuals in the low sense of control group(i.e.,LSC Group)demonstrated exacerbation of avoidance compared to those in the high sense of control group(i.e.,HSC Group).The current study did notfind any attentional bias components under the 800 ms interval condition.Thefindings provide preliminary evidence for a new vigilance-avoidance model for further study with a view to developing interventions targeting negative emotional disorders based on individuals’sense of control. 展开更多
关键词 high sense of control low sense of control threat-related attentional bias attentional avoidance
在线阅读 下载PDF
Aerial Object Tracking with Attention Mechanisms:Accurate Motion Path Estimation under Moving Camera Perspectives
13
作者 Yu-Shiuan Tsai Yuk-Hang Sit 《Computer Modeling in Engineering & Sciences》 2025年第6期3065-3090,共26页
To improve small object detection and trajectory estimation from an aerial moving perspective,we propose the Aerial View Attention-PRB(AVA-PRB)model.AVA-PRB integrates two attention mechanisms—Coordinate Attention(CA... To improve small object detection and trajectory estimation from an aerial moving perspective,we propose the Aerial View Attention-PRB(AVA-PRB)model.AVA-PRB integrates two attention mechanisms—Coordinate Attention(CA)and the Convolutional Block Attention Module(CBAM)—to enhance detection accuracy.Additionally,Shape-IoU is employed as the loss function to refine localization precision.Our model further incorporates an adaptive feature fusion mechanism,which optimizes multi-scale object representation,ensuring robust tracking in complex aerial environments.We evaluate the performance of AVA-PRB on two benchmark datasets:Aerial Person Detection and VisDrone2019-Det.The model achieves 60.9%mAP@0.5 on the Aerial Person Detection dataset,and 51.2%mAP@0.5 on VisDrone2019-Det,demonstrating its effectiveness in aerial object detection.Beyond detection,we propose a novel trajectory estimation method that improves movement path prediction under aerial motion.Experimental results indicate that our approach reduces path deviation by up to 64%,effectively mitigating errors caused by rapid camera movements and background variations.By optimizing feature extraction and enhancing spatialtemporal coherence,our method significantly improves object tracking under aerial moving perspectives.This research addresses the limitations of fixed-camera tracking,enhancing flexibility and accuracy in aerial tracking applications.The proposed approach has broad potential for real-world applications,including surveillance,traffic monitoring,and environmental observation. 展开更多
关键词 Aerial View attention-PRB(AVA-PRB) aerial object tracking small object detection deep learning for Aerial vision attention mechanisms in object detection shape-IoU loss function trajectory estimation drone-based visual surveillance
在线阅读 下载PDF
考虑滞后效应的CNN-BIGRU-Attention预测降水型滑坡位移
14
作者 肖金涛 王自法 +2 位作者 王超 赵登科 李兆焱 《人民黄河》 北大核心 2025年第3期135-140,145,共7页
为研究降水对滑坡的影响,基于大沙窝滑坡日降水量和位移数据,采用移动平均法将位移分解为趋势项位移和周期项位移,采用卷积神经网络(CNN)预测趋势项位移,采用带有注意力机制(Attention)的卷积神经网络-双向门控循环单元(CNN-BIGRU)模型... 为研究降水对滑坡的影响,基于大沙窝滑坡日降水量和位移数据,采用移动平均法将位移分解为趋势项位移和周期项位移,采用卷积神经网络(CNN)预测趋势项位移,采用带有注意力机制(Attention)的卷积神经网络-双向门控循环单元(CNN-BIGRU)模型预测周期项位移,通过叠加趋势项位移和周期项位移得到最终预测位移结果。采用斯皮尔曼相关系数结合滞后性研究分析变量间的滞后关系。以BIGRU-Attention、门控循环单元(GRU)、长短期记忆网络(LSTM)模型为对照,比较CNN-BIGRU-Attention模型预测周期项位移的精确性。结果表明:CNN模型预测以3、6、12 h步长的趋势项位移的R^(2)值分别为0.992、0.977、0.965;CNN-BIGRU-Attention模型预测以3、6、12 h步长的周期项位移的R~2值分别为0.963、0.939、0.896,预测精度均高于BIGRU-Attention、GRU、LSTM模型;基于呷任依村滑坡监测数据,验证了CNN-BIGRU-Attention模型的泛化性。 展开更多
关键词 位移预测 CNN BIGRU attention 大沙窝滑坡 呷任依村滑坡
在线阅读 下载PDF
Application of the improved dung beetle optimizer,muti-head attention and hybrid deep learning algorithms to groundwater depth prediction in the Ningxia area,China 被引量:1
15
作者 Jiarui Cai Bo Sun +5 位作者 Huijun Wang Yi Zheng Siyu Zhou Huixin Li Yanyan Huang Peishu Zong 《Atmospheric and Oceanic Science Letters》 2025年第1期18-23,共6页
Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th... Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance. 展开更多
关键词 Groundwater depth Multi-head attention Improved dung beetle optimizer CNN-LSTM CNN-GRU Ningxia
在线阅读 下载PDF
基于BiLSTM+Attention分析脑电信号测量临床护理人员心理压力
16
作者 朱恩江 黎明 +3 位作者 孙践知 陈晓明 孟文文 邢霞 《中国医学物理学杂志》 2025年第5期651-659,共9页
脑电信号作为一种非侵入性生理指标,可客观评估临床护理人员在重大突发事件中的心理应激压力水平,为精准心理干预提供科学依据,弥补传统问卷方法易受主观偏差影响的局限性。基于此,提出一种基于BiLSTM和注意力机制的心理压力分类模型,... 脑电信号作为一种非侵入性生理指标,可客观评估临床护理人员在重大突发事件中的心理应激压力水平,为精准心理干预提供科学依据,弥补传统问卷方法易受主观偏差影响的局限性。基于此,提出一种基于BiLSTM和注意力机制的心理压力分类模型,通过分析临床护理人员的脑电信号,能够更有效地对其心理压力进行分类。试验结果表明,相比传统的LSTM模型,该模型在DREAMER、Feeling Emotions公开数据集以及自建数据集上都展现出更出色的分类性能。这一研究为心理压力的评估提供一种新的方法,有助于提高临床护理工作的针对性和有效性。 展开更多
关键词 心理压力 测量评估 脑电信号 深度学习 BiLSTM模型 attention机制
在线阅读 下载PDF
Attention机制加成的ICEEMDAN-1D-CNNBiGRU月径流预测
17
作者 安佳彤 赵雪花 +2 位作者 朱博文 郭秋岑 王慧方 《水电能源科学》 北大核心 2025年第7期7-10,6,共5页
针对径流序列呈现出复杂性、高波动性,直接预测误差大的问题,将改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、一维卷积神经网络(1D-CNN)、双向门控循环单元(BiGRU)和注意力(Attention)机制相结合,构建ICEEMDAN-1D-CNN-BiGRU-Attent... 针对径流序列呈现出复杂性、高波动性,直接预测误差大的问题,将改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、一维卷积神经网络(1D-CNN)、双向门控循环单元(BiGRU)和注意力(Attention)机制相结合,构建ICEEMDAN-1D-CNN-BiGRU-Attention模型,充分挖掘径流序列的周期性、长程相关性特征,以提高径流序列的预测精度。以汾河上游的上静游站为例开展月径流序列预测研究,与1D-CNN-BiGRU、1DCNN-BiGRU-Attention、ICEEMDAN-1D-CNN-BiGRU模型的预测结果进行对比分析。结果表明,ICEEMDAN分解原始径流序列,可以充分挖掘径流数据的周期性特征。ICEEMDAN-1D-CNN-BiGRU-Attention模型可以很好地识别序列特征,预测效果较好,验证期的纳什效率系数达0.85以上。Attention机制的加入,可提高峰值的预测效果,在突变较强的训练期合格率可达90%。研究结果为中长期径流预测提供了新思路,并验证了其有效性。 展开更多
关键词 月径流预测 ICEEMDAN 1D-CNN BiGRU attention机制
原文传递
基于双层Attention机制的LSTM模型对CPI的预测研究 被引量:1
18
作者 董曼茹 唐晓彬 《中国管理科学》 北大核心 2025年第5期113-123,共11页
国内外经济形势日趋复杂多变的背景下,及时准确地预测消费者价格指数(CPI),对于提振消费信心、落实扩大内需战略具有重要作用。针对CPI动态变化的多维性特征和发布的滞后性问题,结合自然语言处理技术构建CPI预测数据集,将双层Attention... 国内外经济形势日趋复杂多变的背景下,及时准确地预测消费者价格指数(CPI),对于提振消费信心、落实扩大内需战略具有重要作用。针对CPI动态变化的多维性特征和发布的滞后性问题,结合自然语言处理技术构建CPI预测数据集,将双层Attention机制引入到LSTM神经网络结构,构建ATT-LSTM-ATT模型应用于CPI预测,同时引入多个机器学习模型(ATT-LSTM、LSTM、SVR、RF、XGBoost和LGBM)作对比和交叉验证分析。研究发现:(1)双层Attention机制能够动态关注特征和时序两个维度的关键信息,强化LSTM模型对房地产政策、双十一和节假日等的注意力分配,凸显重要特征和重要时点对CPI变动的影响,有效提升模型对CPI预测的精准度;(2)与其他六种机器学习预测模型相比,ATT-LSTM-ATT模型预测效果更优,对不同期限CPI预测发现该模型具有较强的稳定性,同时不同机器学习模型在CPI不同期限预测表现出异质性特征;(3)文本挖掘数据能够提前把握居民消费动态,综合文本挖掘构建数据集与ATT-LSTM-ATT模型预测出的CPI值比官方发布时间提前约3周。本文结合大数据和机器学习方法提出的双层Attention机制的LSTM模型,为CPI的预测预判提供新的研究思路,能够及时调整消费市场的不稳定现象,为宏观经济管理和调控提供参考价值。 展开更多
关键词 CPI 居民消费 LSTM模型 attention机制 机器学习模型
原文传递
基于Shuffle Attention相似目标检测——以SA-YOLOv7为例
19
作者 任昱臻 樊中奎 +1 位作者 冯振营 朱梅 《现代信息科技》 2025年第11期106-113,共8页
YOLOv7在目标检测中取得了优异的效果,但对相似物体的检测仍存在误检率较高的问题,其主要原因是YOLOv7对细粒度特征的提取能力不足。为解决上述问题,该研究提出SA-YOLOv7目标检测网络,即在不改变ELAN(Extend Efficient Layer Aggregatio... YOLOv7在目标检测中取得了优异的效果,但对相似物体的检测仍存在误检率较高的问题,其主要原因是YOLOv7对细粒度特征的提取能力不足。为解决上述问题,该研究提出SA-YOLOv7目标检测网络,即在不改变ELAN(Extend Efficient Layer Aggregation Networks)整体结构的前提下,将注意力模块SA(Shuffle Attention)与之融合,形成SA-ELAN模块,以获取更多通道和空间特征信息,进而提高相似物体的检测精确度。模型在公共的手和手套相似物体数据集上开展了大量对比实验,探究了SA加入YOLOv7网络中的数量及位置对结果的影响,揭示了SA发挥作用的底层原理,深化了对注意力机制的理解。实验结果显示:SA-YOLOv7相较于YOLOv7,检测精度提升了7.7%,mAP@0.5:0.95提高了1.8%,与最新的YOLOv11相比,也具有0.9%的检测精度优势。SA-YOLOv7的研究为相似物体检测技术的发展提供了助力。 展开更多
关键词 深度学习 YOLOv7 Shuffle attention 相似目标检测
在线阅读 下载PDF
基于深度学习LSTM-Attention模型的超短期电力负荷预测研究 被引量:1
20
作者 彭振国 吴让乐 +1 位作者 张兆师 尉颖 《信息技术与信息化》 2025年第1期155-158,共4页
因现有电力负荷预测方法在负荷值的变动上存在较大的波动性,导致预测结果往往存在一定的滞后现象,这在实际应用中可能会带来一些不便和误差。因此,文章探索了一种基于深度学习技术的LSTM-Attention模型,以实现更为精确的超短期电力负荷... 因现有电力负荷预测方法在负荷值的变动上存在较大的波动性,导致预测结果往往存在一定的滞后现象,这在实际应用中可能会带来一些不便和误差。因此,文章探索了一种基于深度学习技术的LSTM-Attention模型,以实现更为精确的超短期电力负荷预测。通过深度学习的方法,将LSTM-Attention混合模型在源域中积累的知识和经验有效地迁移到短期电力负荷预测的目标域。这种方法显著提高了在有限数据条件下的模型学习效果,使得模型能够更好地捕捉到负荷数据中的关键信息和特征。为了进一步提高预测的准确性,采用了区域最优预测值的方法。具体来说,将通过模型计算得到的区域最优预测值加到模型当前的预测值上,以此来达到短期负荷精准预测的效果。此方法能够充分利用历史数据和实时数据,从而直接输出更为准确的预测结果。实验结果表明,采用LSTM-Attention模型的实验组在负荷曲线的变化上表现得更为平稳。预测结果的数值主要维持在5000~6000 MW的范围内,这表明该模型能够有效捕捉电力负荷的总体变化趋势,可以提供更为准确的总体趋势预测,为电力系统的调度和管理提供有力的支持。 展开更多
关键词 深度学习 LSTM attention 超短期 电力负荷
在线阅读 下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部