Novel benzo-bridged hexaphyrin(2.1.2.1.2.1)and its copper complex were synthesized.Single-crystal structures showed typical figure-of-eight Huckel topologies.NMR,NICS,HOMA,ACID,and EDDB analysis supported their non-ar...Novel benzo-bridged hexaphyrin(2.1.2.1.2.1)and its copper complex were synthesized.Single-crystal structures showed typical figure-of-eight Huckel topologies.NMR,NICS,HOMA,ACID,and EDDB analysis supported their non-aromatic properties owning to the strong local aromatic benzo rings cutting the global aromatic ring of the benzo-bridged figure-of-eight hexaphyrin(2.1.2.1.2.1).The redox properties and degenerate HOMOs and LUMOs levels indicate multielectron donating and accepting abilities.展开更多
P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process o...P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process of aromatic hydroxylation and mechanism of regioselectivity catalyzed by cytochrome P450 monooxygenases remained ambiguous.Here,we have resolved these issues.With a stable chiral organofluorine probe,and especially with X-ray data of two isolated arene oxides derivatives,we demonstrate that an arene oxide pathway is definitely involved in P450-catalyzed aromatic hydroxylation.By the capture,isolation,identification and reactivity exploration of the arene 1,2-oxide and arene 2,3-oxide intermediates,together with advanced QM calculations,the mechanism of how two intermediates go to the same product has been elucidated.In addition to the model substrate,we also confirmed that an arene oxide intermediate is involved in the P450-catalyzed hydroxylation pathway of a natural product derivative methyl cinnamate,which indicates that this intermediate appears to be universal in P450-catalyzed aromatic hydroxylation.Our work not only provides the most direct evidence for the arene oxide pathway and new insights into the regioselectivity involved in P450-catalyzed aromatic hydroxylation,but also supplies a new synthetic approach to achieve the dearomatization of aromatic compounds.展开更多
The associations of polycyclic aromatic hydrocarbon(PAH)exposure with serum uric acid(SUA)or hyperuricemia have been rarely assessed.We aimed to investigate the relationships between urinary PAH metabolites and SUA or...The associations of polycyclic aromatic hydrocarbon(PAH)exposure with serum uric acid(SUA)or hyperuricemia have been rarely assessed.We aimed to investigate the relationships between urinary PAH metabolites and SUA or hyperuricemia among US adults and to explore the mediating role of systemic inflammation in the associations.A total of 10,307 US adults were conducted to assess the associations of seven urinary hydroxy–PAH with SUA and hyperuricemia and evaluate the role of C-reactive protein(CRP),a biomarker of systemic inflammation,in such associations.Results showed that each 1-unit increase in ln-transformed 2-hydroxynaphthalene(2-OHNa),1-hydroxyphenanthrene(1-OHPh),2&3-hydroxyphenanthrene(2&3-OHPh)and total hydroxyphenanthrene(OHPh)was associated with a 1.68(95%confidence interval(CI):0.19 to 3.17),2.46(0.78 to 4.13),3.34(1.59 to 5.09),and 2.99(1.23 to 4.75)μmol/L increase in SUA,and a 8%(odds ratio(OR):1.08,1.02 to 1.15),9%(OR:1.09,1.02 to 1.18),13%(OR:1.13,1.05 to 1.22),and 12%(OR:1.12,95%CI:1.03,1.21)increase in hyperuricemia,respectively.Co-exposure of seven PAHs was positively associated with SUA and hyperuricemia,with 2&3-OHPh showing the highest weight(components weights:0.83 and 0.78,respectively).The CRP mediated 11.47%and 10.44%of the associations ofΣOHPh and 2&3-OHPh with SUA and mediated 8.60%and 8.62%in associations ofΣOHPh and 2&3-OHPh with hyperuricemia,respectively.In conclusion,internal levels of PAH metabolites were associated with elevated SUA levels and the increased risk of hyperuricemia among US adults,and CRP played a mediating role in the associations.展开更多
Dion-Jacobson (DJ) phase hybrid perovskites have been proven to improve the photovoltaic performance of the devices due to its unique structure.At present,some DJ hybrid perovskites have been reported and used for pho...Dion-Jacobson (DJ) phase hybrid perovskites have been proven to improve the photovoltaic performance of the devices due to its unique structure.At present,some DJ hybrid perovskites have been reported and used for photodetection filed,but most of them are based on lead-bromide systems,which is not conducive to construct broadband photodetection devices due to the limitation of intrinsic absorption.Herein,we constructed a bilayered DJ hybrid perovskite (3AMPY)(EA)Pb_(2)I_(7)(3AMPY^(2+)is 3-(aminomethyl)pyridinium,EA^(+)is ethylammonium) using an aromatic spacer,which exhibit large current on/off ratios of 10~4under 520 and 637 nm illumination.In particular,the single crystal device based on (3AMPY)(EA)Pb_(2)I_(7)shows a distinguished detectivity of 7.4×10^(12)Jones and a high responsivity of 0.89A/W under 637 nm illumination.Such finding not only enriches the quantities of DJ hybrid perovskites,but also provides useful assistance for constructing high-performance optoelectronic device in the future.展开更多
Polycyclic aromatic hydrocarbons(PAHs)could be produced during the preparation of biochar,which may pose potential risks to the environment and human health.Existing research mainly focuses on the removal efficiency o...Polycyclic aromatic hydrocarbons(PAHs)could be produced during the preparation of biochar,which may pose potential risks to the environment and human health.Existing research mainly focuses on the removal efficiency of PAHs in biochar using different methods.Still,there are few reports on the removal mechanism of PAHs and the impact of treated biochar on plant growth.This study prepared biochar by pyrolysis of sewage sludge,pig manure,and distillers grains at 300,500,and 600℃,respectively.The prepared biochar was subjected to thermal treatment,water washing treatment,and hydrothermal treatment to investigate the removal mechanism of PAHs in biochar and evaluate its effect on plant growth.The results showed that the removal rates of PAHs in biochar by hydrothermal treatment,thermal treatment,and water washing were 36.79%-86.09%,80.00%-89.90%,and 19.15%-72.40%,respectively.Compared with thermal treatment and water washing treatments,the hydrothermal treatment is more effective.The removal rate of PAHs in sludge biochar with a pyrolysis temperature of 300℃ by hydrothermal treatment reached 86.09%under 80℃ for 2 h.The removal mechanisms of PAHs include weakening hydrophobic interaction and thermal desorption.The germination results indicate that treated biochar reduces malondialdehyde content in mung bean seedlings and increases superoxide dismutase,peroxidase,and catalase activities.Sludge biochar after hydrothermal treatment is more conducive to the growth of mung beans than pristine biochar.This study provides an effective pathway for the safe utilization of biochar.展开更多
Previous studies have reported a relationship between exposure to metals and polycyclic aromatic hydrocarbons(PAHs)and blood glucose levels,but whether the mechanisms are mediated by amino acids remains to be elucidat...Previous studies have reported a relationship between exposure to metals and polycyclic aromatic hydrocarbons(PAHs)and blood glucose levels,but whether the mechanisms are mediated by amino acids remains to be elucidated.We conducted a three-wave repeated measurement study involving 201 elderly individuals(aged≥50 years)from five communities in Beijing,China.We simultaneously measured eightmetals in both blood and urine,six monohydroxy PAHs in urine,and 23 amino acids in blood.Linear mixed-effects and sparse partial least squares models were used to evaluate the individual effects,and Bayesian kernel machine regression was employed to mixture effects.Mediation analysis was further used to explore whether amino acids mediators mediate the association.We observed significant associations of selenium and strontium with increased blood glucose.Additionally,blood copper,urinary nickel,as well as urinary 1+9 hydroxyphenanthrene,were associated with irregular blood glucose regulation.Moreover,we found that amino acids such as leucine,proline,and alanine may mediate the associations.This study is the first to investigate the effect of metals and PAHs on blood glucose homeostasis,while also exploring the mediating role of amino acids,offering new insights into the impact of metals and PAHs on blood glucose regulation.展开更多
As important precursors of ozone(O_(3))and secondary organic aerosol(SOA),reactive aromatic hydrocarbons(AHs)have typically been classified as anthropogenic air pollutants.However,biogenic emission can also be a poten...As important precursors of ozone(O_(3))and secondary organic aerosol(SOA),reactive aromatic hydrocarbons(AHs)have typically been classified as anthropogenic air pollutants.However,biogenic emission can also be a potential source of atmospheric AHs.Herein,field observations in a eutrophic lake were combined with laboratory incubation experiments to investigate the biogenic AH emission.Field work showed that the water-air fluxes of AHs measured at sites with high cyanobacteria abundance could reach an order of magnitude greater than those at sites with low cyanobacteria abundance,suggesting that cyanobacteria could be the important contributor to measured AHs.Laboratory incubation experiments further confirmed the AH emission of cyanobacteria and revealed that the emission could change significantly over the lifespan of cyanobacteria and varied to their growing conditions.By combining field observations and laboratory incubation experiments,it has been suggested that the emission of different AH species from cyanobacteria could be modulated by variable biogeochemical mechanisms and that the biochemical process of toluene could be different from that of other AHs.This study investigates AH emissions from inland aquatic ecosystem and suggests that biogenic emission could be a potential source of atmospheric AHs.展开更多
Size-fractionated particulate matter(PM_(2.5)and PM>_(2.5))was collected at a traffic site in Kanazawa,Japan in a seasonal sampling work in 2020.Nine polycyclic aromatic hydrocarbons(4-to 6-ring PAHs)were determine...Size-fractionated particulate matter(PM_(2.5)and PM>_(2.5))was collected at a traffic site in Kanazawa,Japan in a seasonal sampling work in 2020.Nine polycyclic aromatic hydrocarbons(4-to 6-ring PAHs)were determined in fine and coarse particles.The gas/particle partitioning coefficients(K_(p))of the PAHs were calculated from the supercooled liquid vapour pressure and octanol-air partitioning coefficient based on the relationships obtained in previous traffic pollution-related studies.Gaseous PAHs were estimated by K_(p) and the concentrations of PM and particulate PAHs.The concentrations of total PAHs were 32.5,320.1 and 5646.2 pg/m^(3) in the PM>_(2.5),PM_(2.5) and gas phases,respectively.Significant seasonal trends in PAHs were observed(particle phase:lowest in summer,gas phase:lowest in spring,particle and gas phase:lowest in spring).Compared to 2019,the total PAH concentrations(in particles)decreased in 2020,especially in spring and summer,which might be due to reduced traffic trips during the COVID-19 outbreak.The incremental lifetime cancer risk(ILCR)calculated from the toxic equivalent concentrations relative to benzo[a]pyrene(BaP_(eq))was lower than the acceptable limit issued by the US Environmental Protection Agency,indicating a low cancer risk in long-term exposure to current PAH levels.It is notable that gaseous PAHs considerably contributed to BaP_(eq) and ILCR(over 50%),which highlighted the significance of gaseous PAH monitoring for public health protection.This low-cost estimation method for gaseous PAHs can be expected to reliably and conveniently obtain PAH concentrations as a surrogate for traditional sampling in the future work.展开更多
Coconut(Cocos nucifera L.)is a key tropical economic tree valued for its fruit flavor,particularly 2-acetyl-1-pyrroline(2AP),a vital aroma metabolite.To enhance high-aromatic coconut breeding efforts,it is essential t...Coconut(Cocos nucifera L.)is a key tropical economic tree valued for its fruit flavor,particularly 2-acetyl-1-pyrroline(2AP),a vital aroma metabolite.To enhance high-aromatic coconut breeding efforts,it is essential to deeply understand the hereditary factors governing the production of 2AP.In this study,a genome-wide association analysis identifies 32 loci that exhibit significant associations with 2AP content based on single nucleotide polymorphism(SNP)variations from 168 aromatic coconut germplasm resources.Transcriptome analysis then pinpoints 22 candidate genes near significant loci involved in 2AP metabolism.Proteins encoded by these genes are involved in amino acid metabolism,glycolysis,and secondary metabolism.Among these,Asparagine synthetase coding gene ASN1,Gamma-glutamylcysteine synthetase coding gene GSH1,and UbiA prenyltransferase coding gene UBIA are enriched in the linkage region constructed by significant locus Chr04_61490504.In particular,the SNP mutation of CnASN1 leads to amino acid changes in the functional region of the coding protein,potentially resulting in differences in 2AP content among haplotype populations.Identifying variations in related candidate genes,particularly the gene CnASN1,provides molecular markers closely associated with 2AP synthesis for coconut breeding and offers further insights into the metabolic mechanisms of 2AP.展开更多
Objective Exposure to polycyclic aromatic hydrocarbons(PAHs)or metal(loid)s individually has been associated with neural tube defects(NTDs).However,the impacts of PAH and metal(loid)co-exposure and potential interacti...Objective Exposure to polycyclic aromatic hydrocarbons(PAHs)or metal(loid)s individually has been associated with neural tube defects(NTDs).However,the impacts of PAH and metal(loid)co-exposure and potential interaction effects on NTD risk remain unclear.We conducted a case-control study in China among population with a high prevalence of NTDs to investigate the combined effects of PAH and metal(loid)exposures on the risk of NTD.Methods Cases included 80 women who gave birth to offspring with NTDs,whereas controls were 50 women who delivered infants with no congenital malformations.We analyzed the levels of placental PAHs using gas chromatography and mass spectrometry,PAH-DNA adducts with 32P-post-labeling method,and metal(loid)s with an inductively coupled plasma mass spectrometer.Unconditional logistic regression was employed to estimate the associations between individual exposures and NTDs.Least absolute shrinkage and selection operator(LASSO)penalized regression models were used to select a subset of exposures,while additive interaction models were used to identify interaction effects.Results In the single-exposure models,we found that eight PAHs,PAH-DNA adducts,and 28 metal(loid)s were associated with NTDs.Pyrene,selenium,molybdenum,cadmium,uranium,and rubidium were selected through LASSO regression and were statistically associated with NTDs in the multiple-exposure models.Women with high levels of pyrene and molybdenum or pyrene and selenium exhibited significantly increased risk of having offspring with NTDs,indicating that these combinations may have synergistic effects on the risk of NTDs.Conclusion Our findings suggest that individual PAHs and metal(loid)s,as well as their interactions,may be associated with the risk of NTDs,which warrants further investigation.展开更多
Anemia is still prevalent among low and middle-income countries,posing serious family and social burdens.However,scarce studies provided evidence for real-world exposure to polycyclic aromatic hydrocarbons(PAHs)and an...Anemia is still prevalent among low and middle-income countries,posing serious family and social burdens.However,scarce studies provided evidence for real-world exposure to polycyclic aromatic hydrocarbons(PAHs)and anemia among pregnant women,as well as involved biological mechanisms.So,we conducted this study including 1717 late pregnant women fromZunyi Birth Cohort and collected urine samples for PAHs metabolites detection.Logistic regression and restricted cubic spline regression were used to examine exposuredisease risks and dose-response relationships.We conducted Bayesian kernel machine regression,weighted quantile sum regression,and quantile g-computation regression to fit the joint impacts of multiple PAHs in the real-world scenario on hypocalcemia and anemia.Results showed single exposure to 2-OHNap,2-OHFlu,9-OHFlu,1-OHPhe,2-OHPhe,3-OHPhe,and 1-OHPyr(all P-trend<0.05)increased the risks of hypocalcemia and anemia.Moreover,PAHs mixture was significantly related to higher risks of hypocalcemia and anemia,with 3-OHPhe and 1-OHPyr identified as their major drivers,respectively.Importantly,hypocalcemia served as a significant biological mechanism responsible for PAHs and anemia.Our findings suggest that individual and joint exposure to PAHs during late pregnancy elevate the anemia risk,and calcium supplementation might be a low-cost intervention target for reducing the PAHs-related impairment on anemia for pregnant women.展开更多
Halogenated aromatic disinfection byproducts(DBPs)are gradually receiving attention due to their high detection frequency and usually higher toxicity than regulated DBPs.In this study,we established a solid phase extr...Halogenated aromatic disinfection byproducts(DBPs)are gradually receiving attention due to their high detection frequency and usually higher toxicity than regulated DBPs.In this study,we established a solid phase extraction(SPE)-LC-MS/MS method to simultaneously trace analyze 59 halogenated aromatic DBPs.The limits of detection and limits of quantification of halogenated aromatic DBPs ranged from 0.03 to 135.23 ng/L and from 0.1 to 450.76 ng/L,respectively.The range of recoveries and relative standard deviation(RSD)in river water were between 72.41%to 119.54%and 1.86%to 16.03%,respectively.Therefore,this method can be used to accurately analyze trace levels of halogenated aromatic DBPs in drinking water.The occurrence and transformation of halogenated aromatic DBPs were explored based on this method.In the chlorinated simulated source water and chlorinated river water,20 and 45 halogenated aromatic DBPs were determined,respectively.The active halogen species(HOCl,HOBr,and HOI)first reacted with natural organic matter(NOM)to form halogenated aromatic DBPs.Then,chlorine further reacted with the halogenated aromatic DBPs to convert them into small-molecule halogenated aliphatic DBPs through oxidation,electrophilic substitution,and hydrolysis reaction,etc.In the chlorinated simulated source water,chlorinated river water,and tap water,the toxicity contribution of bromoacetic acids(Br-HAAs)accounted for themajority(>71.16%).Given that halogenated aromatic DBPs are intermediate products of halogenated aliphatic DBPs,controlling the formation of halogenated aromatic DBPs is beneficial in decreasing the formation of halogenated aliphatic DBPs,thereby diminishing the toxicity of drinking water.展开更多
Objective To investigate the association of various polycyclic aromatic hydrocarbon(PAH)metabolites with diverse subtypes of cardiovascular disease(CVD)risk.Methods A novel predicting risk of cardiovascular disease EV...Objective To investigate the association of various polycyclic aromatic hydrocarbon(PAH)metabolites with diverse subtypes of cardiovascular disease(CVD)risk.Methods A novel predicting risk of cardiovascular disease EVENTs PREVENT equation was used to estimate the 10-year diverse subtypes of CVD risk,and their associations with PAH metabolites were analyzed using multiple logistic regression models,the weighted quantile sum(WQS)model,the quantile g-computation(qgcomp)model,and a stratified analysis of subgroups.Results For this study,six thousand seven hundred and forty-five participants were selected,and significant positive associations were observed between PAHs,naphthalene(NAP),and fluorene(FLU),and the risks of total CVD,atherosclerotic cardiovascular disease(ASCVD),and heart failure(HF).NAP and FLU were the primary contributors to the effects of PAH mixtures,and their associations with total CVD,ASCVD,and HF risk were significant in younger participants(30≤age<50 years);however,the associations of phenanthrene(PHEN)with ASCVD,HF,coronary heart disease(CHD),and stroke were dominant in aging participants(age≥50 years).Notably,pyrene(PYR)was negatively associated with the risk of ASCVD,HF,CHD,and stroke.Similarly,negative associations of PYR with the four CVD subtypes were noticeable in aging participants.Conclusion Different PAHs metabolites had different impacts on each CVD subtype among different age groups.Notably,the protective effects of PYR on ASCVD,HF,CHD,and stroke were noticeable in aging individuals.展开更多
The concentrations of polycyclic aromatic hydrocarbons(PAHs),their sources and toxic equivalent(TEQ)in soil,suspended matter and bottom sediments in the Fatala River Basin ecosystem were obtained for the fi rst time t...The concentrations of polycyclic aromatic hydrocarbons(PAHs),their sources and toxic equivalent(TEQ)in soil,suspended matter and bottom sediments in the Fatala River Basin ecosystem were obtained for the fi rst time to our knowledge.Determination of 14 PAHs(ΣPAHs)was carried out using high-performance liquid chromatography.TheΣPAH content in soil ranged from 13 to 50,920(Me=820)ng/g.The composition of PAHs(high proportion of low-molecular-weight compounds and values of individual PAHs ratios)refl ected the signifi cant oil pollution of soil.Contaminated soil was localated in the central part of the Fatala River Basin.The median benzo(a)pyrene toxic equivalent of soil at the study site was 1.08(range,0.05 to 53.16)ngTEQ/g,showing generally low soil toxicity.TheΣPAH content in suspended matter was in the range of 33 to 1316(Me=309)ng/L.TheΣPAH content in bottom sediments ranged from 36 to 6943(Me=478)ng/L,corresponding to clean and moderately contaminated sediments.TheΣPAH content in bottom sediments depended on the anthropogenic impact on the Fatala River Basin territory and the bottom sediment features.Bottom sediments and suspended matter had a low toxic equivalent.展开更多
Donor-acceptor(D-A)compounds are particularly important in optoelectronic and biological applications.However,they are normally synthesized in the presence of transition metal catalysts.Herein,we report a metal-free m...Donor-acceptor(D-A)compounds are particularly important in optoelectronic and biological applications.However,they are normally synthesized in the presence of transition metal catalysts.Herein,we report a metal-free method by a complexmediated nucleophilic aromatic substitution of aryl nitriles with amines.The method can lead to rich D-A type aggregation-induced emission luminogens(AIEgens)with tunable properties.They emit from deep-blue to yellow-green and possess high photoluminescence quantum yields up to 70.5%in the aggregate state.Interestingly,the suppression of intramolecular flapping is proved to play an indispensable role in the AIE behavior,which is different from the mechanism met in other AIEgens.Moreover,the biocompatible AIEgens possess specific staining of lipid droplets in HeLa cells and the superiority of identifying fatty liver over traditional Oil Red O staining is exhibited.展开更多
Taking Hefei City as the research site,preliminary investigations were conducted into its aromatic plant resources to fill the gap in systematic research and establish a localized database in this study.Based on the a...Taking Hefei City as the research site,preliminary investigations were conducted into its aromatic plant resources to fill the gap in systematic research and establish a localized database in this study.Based on the analysis and organization of data on Hefei’s aromatic plant resources,the Analytic Hierarchy Process(AHP)was employed to quantitatively evaluate their comprehensive value(ecology,landscape,economy,etc.),so as to construct a comprehensive evaluation model for these resources and screen high-value plant species.Finally,based on the above objective investigation and analysis,recommendations were proposed for the landscape application of aromatic plant resources in Hefei,aiming to build an integrated ecological-landscape-economic value system.展开更多
Particulate matter(PM)can cause adverse health effects by overproducing reactive oxygen species(ROS).Although the ability of PM to induce ROS generation depends on its composi-tion and environmental factors.This study...Particulate matter(PM)can cause adverse health effects by overproducing reactive oxygen species(ROS).Although the ability of PM to induce ROS generation depends on its composi-tion and environmental factors.This study explores how photo-oxidation affects ROS gen-eration from aromatic compounds(ACs,including catechol(CAT),phthalic acid(PA),and 4,4-oxydibenzoic acid(4,4-OBA))and their mixtures with transition metals(TMs,includ-ing Fe(II),Mn(II),and Cu(II))using Fourier-transform infrared(FTIR)and Ultraviolet-visible spectroscopy(UV-Vis).Results showed that photo-oxidation facilitated ROS generation from ACs.CAT-Fe(II)/Cu(II)showed synergistic effects,but 4,4-OBA-Fe(II)/Cu(II)showed antag-onistic effects.ACs-Mn(II)and PA-Fe(II)/Cu(II)exhibited synergistic effects first and then showed antagonistic effects.The different interactions were due to complexation between ACs and TMs.The photo-oxidized ACs-TMs significantly enhanced ROS generation com-pared with ACs-TMs.The study suggested the photo-oxidation mechanism involved that the transfer ofπ-electrons from the ground to an excited state in benzene rings and func-tional groups,leading to the breakage and formation of chemical bonds or easierπ-electron transfer from ACs to TMs.The former could generate ROS directly or produce polymers that promoted ROS generation,while the latter promoted ROS generation by transferringπ-electrons to dissolved oxygen quickly.Our study revealed that both interactions among components and photo-oxidation significantly influenced ROS generation.Future studies should integrate broader atmospheric factors and PM components to fully assess oxidative potential and health impacts.展开更多
Enhanced mass concentrations of aromatic-derived secondary organic aerosol(SOA)are frequently observed during humid-haze events.However,the influencing mechanism of relative humidity(RH)in aromatic-derived SOA formati...Enhanced mass concentrations of aromatic-derived secondary organic aerosol(SOA)are frequently observed during humid-haze events.However,the influencing mechanism of relative humidity(RH)in aromatic-derived SOA formation remains incompletely understood.Here,the RH dependence of SOA formation in the presence of NOx was explored by a series of chamber experiments for toluene(TOL)and 1,3,5-trimethylbenzene(TMB)photooxidation.The yield of TOL SOA and TMB SOA increased by 221%and 52%with increasing RH from~8%to~70%,respectively.Analytical results from a high-resolution mass spectrometer showed that SOA constituents with high oxygen content(O/C>0.6)were more abundant in SOA formed in the~70%RH experiment.The elevated yields and O/C of SOA could be attributed to the promoted formation and particle-phase diffusivity of highly oxidized molecules.In addition,in comparison with TMB,TOL could produce more unsaturated aldehydes,which are oxidized into carboxylic acids with high O/C,leading to a more sensitive response of TOL SOA formation to the change in RH.Our work provides mechanistic insights into RH roles in aromatic SOA formation and is helpful for a better understanding of humid-haze events.展开更多
One of the main challenges in oil-water separation of traditional Chinese medicines(TCM)is to obtain essential oils from the aromatic water of TCM.In this study,silicon dioxide/polyvinylidene fluoride(SiO_(2)/PVDF)mem...One of the main challenges in oil-water separation of traditional Chinese medicines(TCM)is to obtain essential oils from the aromatic water of TCM.In this study,silicon dioxide/polyvinylidene fluoride(SiO_(2)/PVDF)membranes were prepared using nonsolvent induce phase separation.Then polydimethylsiloxane(PDMS)was coated to obtain PDMS/SiO_(2/)PVDF membranes.Separated essential oils and water from aromatic water in the gaseous state by vapor permeation membrane separation technology.The relationship between membrane structure and membrane separation effect was investigated.Response surface methodology was used to develop a quadratic model for the separation factor,membrane permeation separation index and membrane preparation process.The optimal process parameters for the membrane separation were 12.31%(mass)concentration of PVDF solution,9.6%(mass)of N,Ndimethylacetamide in the solidification bath,and 0.2 g hydrophobic nano-SiO_(2)incorporation,with a separation factor of 14.45,and a membrane flux of 1203.04 g·m^(-2)·h^(-1).Compared with the PDMS/PVDF membranes,the separation factor and membrane flux were increased by 68.59%and 3.46%,respectively.Compared with the SiO_(2)/PVDF membranes,the separation factor and membrane flux were increased by478%and 79.33%,respectively.Effectively mitigated the limitations of traditional polymer membrane material performance affected by the"trade-off"effect.Attenuated total internal reflection-Fourier transform infrared spectroscopy,contact angle,scanning electron microscopy and energy dispersive spectroscopy were used to characterize the PDMS/SiO_(2)/PVDF membranes,and gas chromatography was used to characterize the permeate.In addition,the contents of L-menthol,L-menthone,menthyl acetate and limonene in the permeate,conformed to the European Pharmacopoeia standards.This study provided an effective preparation strategy of a feasible hydrophobic powder polymer membrane for the separation of essential oils from gaseous peppermint aromatic water.展开更多
Although the parallel incorporation of fluorinated aromatic amino acids(FAAAs)into proteins has been explored since 2010,the corresponding ^(19)F NMR investigation has been lacking to date.To assess the potential of t...Although the parallel incorporation of fluorinated aromatic amino acids(FAAAs)into proteins has been explored since 2010,the corresponding ^(19)F NMR investigation has been lacking to date.To assess the potential of the parallel incorporation of FAAAs in studies of protein structure,dynamics and interactions,we examine the protein yields,fluorine incorporation efficiencies,and ^(19)F NMR spectra upon simultaneously incorporating FAAAs including 3-fluorotyrosine(3FY),4-fluorophenylalanine(4FF)and 5-fluorotryptophan(5FW)into two model proteins:the structured protein GB1 domain(GB1)and the intrinsically disordered protein a-synuclein(a-syn).We found that the simultaneous incorporation of 3FY and 5FW achieved higher efficiency than combinations of 4FF and 5FW,4FF and 3FY,or 3FY,4FF and 5FW.Moreover,incorporating more types of FAAAs leads to a reduction in overall yield.The ^(19)F spectra of 3FY,4FF and 5FW residues in α-syn and GB1 exhibited good dispersion of chemical shifts.However,the GB1 spectrum showed complexity due to incomplete fluorination and interactions within aromatic cluster.This complexity could be significantly reduced by supplementing the medium with natural aromatic amino acids.To validate the advantage of ^(19)F NMR spectrum,we use 3FY-4FF-5FW-F94W-α-syn to investigate the interaction between α-syn and sodium dodecyl sulphate(SDS)micelle.Our study demonstrates that ^(19)F NMR spectroscopy of proteins with parallel incorporation of FAAAs provides a valuable tool for investigating protein conformation,dynamics and interactions.展开更多
基金partly supported by the National Natural Science Foundation of China(No.22301108)the Project Startup Foundation for Distinguished Scholars of Jiangsu University(Nos.4111310026 and 5501310014).
文摘Novel benzo-bridged hexaphyrin(2.1.2.1.2.1)and its copper complex were synthesized.Single-crystal structures showed typical figure-of-eight Huckel topologies.NMR,NICS,HOMA,ACID,and EDDB analysis supported their non-aromatic properties owning to the strong local aromatic benzo rings cutting the global aromatic ring of the benzo-bridged figure-of-eight hexaphyrin(2.1.2.1.2.1).The redox properties and degenerate HOMOs and LUMOs levels indicate multielectron donating and accepting abilities.
文摘P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process of aromatic hydroxylation and mechanism of regioselectivity catalyzed by cytochrome P450 monooxygenases remained ambiguous.Here,we have resolved these issues.With a stable chiral organofluorine probe,and especially with X-ray data of two isolated arene oxides derivatives,we demonstrate that an arene oxide pathway is definitely involved in P450-catalyzed aromatic hydroxylation.By the capture,isolation,identification and reactivity exploration of the arene 1,2-oxide and arene 2,3-oxide intermediates,together with advanced QM calculations,the mechanism of how two intermediates go to the same product has been elucidated.In addition to the model substrate,we also confirmed that an arene oxide intermediate is involved in the P450-catalyzed hydroxylation pathway of a natural product derivative methyl cinnamate,which indicates that this intermediate appears to be universal in P450-catalyzed aromatic hydroxylation.Our work not only provides the most direct evidence for the arene oxide pathway and new insights into the regioselectivity involved in P450-catalyzed aromatic hydroxylation,but also supplies a new synthetic approach to achieve the dearomatization of aromatic compounds.
基金supported by the Key Program of National Natural Science Foundation of China(No.82241088)the Natural Science Foundation of Hubei Province(No.2022CFB813).
文摘The associations of polycyclic aromatic hydrocarbon(PAH)exposure with serum uric acid(SUA)or hyperuricemia have been rarely assessed.We aimed to investigate the relationships between urinary PAH metabolites and SUA or hyperuricemia among US adults and to explore the mediating role of systemic inflammation in the associations.A total of 10,307 US adults were conducted to assess the associations of seven urinary hydroxy–PAH with SUA and hyperuricemia and evaluate the role of C-reactive protein(CRP),a biomarker of systemic inflammation,in such associations.Results showed that each 1-unit increase in ln-transformed 2-hydroxynaphthalene(2-OHNa),1-hydroxyphenanthrene(1-OHPh),2&3-hydroxyphenanthrene(2&3-OHPh)and total hydroxyphenanthrene(OHPh)was associated with a 1.68(95%confidence interval(CI):0.19 to 3.17),2.46(0.78 to 4.13),3.34(1.59 to 5.09),and 2.99(1.23 to 4.75)μmol/L increase in SUA,and a 8%(odds ratio(OR):1.08,1.02 to 1.15),9%(OR:1.09,1.02 to 1.18),13%(OR:1.13,1.05 to 1.22),and 12%(OR:1.12,95%CI:1.03,1.21)increase in hyperuricemia,respectively.Co-exposure of seven PAHs was positively associated with SUA and hyperuricemia,with 2&3-OHPh showing the highest weight(components weights:0.83 and 0.78,respectively).The CRP mediated 11.47%and 10.44%of the associations ofΣOHPh and 2&3-OHPh with SUA and mediated 8.60%and 8.62%in associations ofΣOHPh and 2&3-OHPh with hyperuricemia,respectively.In conclusion,internal levels of PAH metabolites were associated with elevated SUA levels and the increased risk of hyperuricemia among US adults,and CRP played a mediating role in the associations.
基金financially supported by the National Natural Science Foundation of China(Nos.22005183 and 22275117)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices(No.KF202204)。
文摘Dion-Jacobson (DJ) phase hybrid perovskites have been proven to improve the photovoltaic performance of the devices due to its unique structure.At present,some DJ hybrid perovskites have been reported and used for photodetection filed,but most of them are based on lead-bromide systems,which is not conducive to construct broadband photodetection devices due to the limitation of intrinsic absorption.Herein,we constructed a bilayered DJ hybrid perovskite (3AMPY)(EA)Pb_(2)I_(7)(3AMPY^(2+)is 3-(aminomethyl)pyridinium,EA^(+)is ethylammonium) using an aromatic spacer,which exhibit large current on/off ratios of 10~4under 520 and 637 nm illumination.In particular,the single crystal device based on (3AMPY)(EA)Pb_(2)I_(7)shows a distinguished detectivity of 7.4×10^(12)Jones and a high responsivity of 0.89A/W under 637 nm illumination.Such finding not only enriches the quantities of DJ hybrid perovskites,but also provides useful assistance for constructing high-performance optoelectronic device in the future.
基金supported by the National Natural Science Foundation of China(No.41977297)the Special Fund for Outstanding Youth Talents of Science and Technology of Guizhou Province(No.YQK[2023]014)+1 种基金the Key Project of Science and Technology Department of Guizhou Province(No.ZK(2022)016)the Foreign Expert Project of the Ministry of Science and Technology(No.Y20240039)。
文摘Polycyclic aromatic hydrocarbons(PAHs)could be produced during the preparation of biochar,which may pose potential risks to the environment and human health.Existing research mainly focuses on the removal efficiency of PAHs in biochar using different methods.Still,there are few reports on the removal mechanism of PAHs and the impact of treated biochar on plant growth.This study prepared biochar by pyrolysis of sewage sludge,pig manure,and distillers grains at 300,500,and 600℃,respectively.The prepared biochar was subjected to thermal treatment,water washing treatment,and hydrothermal treatment to investigate the removal mechanism of PAHs in biochar and evaluate its effect on plant growth.The results showed that the removal rates of PAHs in biochar by hydrothermal treatment,thermal treatment,and water washing were 36.79%-86.09%,80.00%-89.90%,and 19.15%-72.40%,respectively.Compared with thermal treatment and water washing treatments,the hydrothermal treatment is more effective.The removal rate of PAHs in sludge biochar with a pyrolysis temperature of 300℃ by hydrothermal treatment reached 86.09%under 80℃ for 2 h.The removal mechanisms of PAHs include weakening hydrophobic interaction and thermal desorption.The germination results indicate that treated biochar reduces malondialdehyde content in mung bean seedlings and increases superoxide dismutase,peroxidase,and catalase activities.Sludge biochar after hydrothermal treatment is more conducive to the growth of mung beans than pristine biochar.This study provides an effective pathway for the safe utilization of biochar.
基金supported by the Noncommunicable Chronic Diseases-National Science and Technology Major Project(No.2023ZD0513200)the National Natural Science Foundation of China(Nos.82404278 and 82404365)China Postdoctoral Science Foundation(Nos.2023M730317 and 2023T160066).
文摘Previous studies have reported a relationship between exposure to metals and polycyclic aromatic hydrocarbons(PAHs)and blood glucose levels,but whether the mechanisms are mediated by amino acids remains to be elucidated.We conducted a three-wave repeated measurement study involving 201 elderly individuals(aged≥50 years)from five communities in Beijing,China.We simultaneously measured eightmetals in both blood and urine,six monohydroxy PAHs in urine,and 23 amino acids in blood.Linear mixed-effects and sparse partial least squares models were used to evaluate the individual effects,and Bayesian kernel machine regression was employed to mixture effects.Mediation analysis was further used to explore whether amino acids mediators mediate the association.We observed significant associations of selenium and strontium with increased blood glucose.Additionally,blood copper,urinary nickel,as well as urinary 1+9 hydroxyphenanthrene,were associated with irregular blood glucose regulation.Moreover,we found that amino acids such as leucine,proline,and alanine may mediate the associations.This study is the first to investigate the effect of metals and PAHs on blood glucose homeostasis,while also exploring the mediating role of amino acids,offering new insights into the impact of metals and PAHs on blood glucose regulation.
基金supported by the National Natural Science Foundation of China(Nos.42207128 and 41273095)the Natural Science Foundation of Anhui Province(No.2008085MD111)the Key Research Projects of Natural Science in Colleges and Universities of Anhui Province(No.KJ2021A0091).
文摘As important precursors of ozone(O_(3))and secondary organic aerosol(SOA),reactive aromatic hydrocarbons(AHs)have typically been classified as anthropogenic air pollutants.However,biogenic emission can also be a potential source of atmospheric AHs.Herein,field observations in a eutrophic lake were combined with laboratory incubation experiments to investigate the biogenic AH emission.Field work showed that the water-air fluxes of AHs measured at sites with high cyanobacteria abundance could reach an order of magnitude greater than those at sites with low cyanobacteria abundance,suggesting that cyanobacteria could be the important contributor to measured AHs.Laboratory incubation experiments further confirmed the AH emission of cyanobacteria and revealed that the emission could change significantly over the lifespan of cyanobacteria and varied to their growing conditions.By combining field observations and laboratory incubation experiments,it has been suggested that the emission of different AH species from cyanobacteria could be modulated by variable biogeochemical mechanisms and that the biochemical process of toluene could be different from that of other AHs.This study investigates AH emissions from inland aquatic ecosystem and suggests that biogenic emission could be a potential source of atmospheric AHs.
基金supported by the Bilateral Open Partnership Joint Research Projects of the Japan Society for the Promotion of Science,Japan(No.JPJSBP120219914)the CHOZEN Project of Kanazawa University,Japan(2019)the Cooperative Research Programs of Institute of Nature and Environmental Technology,Kanazawa University,Japan(22002,22013,22007)。
文摘Size-fractionated particulate matter(PM_(2.5)and PM>_(2.5))was collected at a traffic site in Kanazawa,Japan in a seasonal sampling work in 2020.Nine polycyclic aromatic hydrocarbons(4-to 6-ring PAHs)were determined in fine and coarse particles.The gas/particle partitioning coefficients(K_(p))of the PAHs were calculated from the supercooled liquid vapour pressure and octanol-air partitioning coefficient based on the relationships obtained in previous traffic pollution-related studies.Gaseous PAHs were estimated by K_(p) and the concentrations of PM and particulate PAHs.The concentrations of total PAHs were 32.5,320.1 and 5646.2 pg/m^(3) in the PM>_(2.5),PM_(2.5) and gas phases,respectively.Significant seasonal trends in PAHs were observed(particle phase:lowest in summer,gas phase:lowest in spring,particle and gas phase:lowest in spring).Compared to 2019,the total PAH concentrations(in particles)decreased in 2020,especially in spring and summer,which might be due to reduced traffic trips during the COVID-19 outbreak.The incremental lifetime cancer risk(ILCR)calculated from the toxic equivalent concentrations relative to benzo[a]pyrene(BaP_(eq))was lower than the acceptable limit issued by the US Environmental Protection Agency,indicating a low cancer risk in long-term exposure to current PAH levels.It is notable that gaseous PAHs considerably contributed to BaP_(eq) and ILCR(over 50%),which highlighted the significance of gaseous PAH monitoring for public health protection.This low-cost estimation method for gaseous PAHs can be expected to reliably and conveniently obtain PAH concentrations as a surrogate for traditional sampling in the future work.
基金supported by the Major Science and Technology Project of Hainan Province(ZDKJ2021012)National Natural Science Foundation of China(32071805)the National Key Research and Development Program of China(2023YFD2200700)。
文摘Coconut(Cocos nucifera L.)is a key tropical economic tree valued for its fruit flavor,particularly 2-acetyl-1-pyrroline(2AP),a vital aroma metabolite.To enhance high-aromatic coconut breeding efforts,it is essential to deeply understand the hereditary factors governing the production of 2AP.In this study,a genome-wide association analysis identifies 32 loci that exhibit significant associations with 2AP content based on single nucleotide polymorphism(SNP)variations from 168 aromatic coconut germplasm resources.Transcriptome analysis then pinpoints 22 candidate genes near significant loci involved in 2AP metabolism.Proteins encoded by these genes are involved in amino acid metabolism,glycolysis,and secondary metabolism.Among these,Asparagine synthetase coding gene ASN1,Gamma-glutamylcysteine synthetase coding gene GSH1,and UbiA prenyltransferase coding gene UBIA are enriched in the linkage region constructed by significant locus Chr04_61490504.In particular,the SNP mutation of CnASN1 leads to amino acid changes in the functional region of the coding protein,potentially resulting in differences in 2AP content among haplotype populations.Identifying variations in related candidate genes,particularly the gene CnASN1,provides molecular markers closely associated with 2AP synthesis for coconut breeding and offers further insights into the metabolic mechanisms of 2AP.
基金supported by the National Key Research and Development Program,Ministry of Science and Technology of the People's Republic of China(Grant No.2021YFC2701001)the National Natural Science Foundation of China(Grant No.81973056).
文摘Objective Exposure to polycyclic aromatic hydrocarbons(PAHs)or metal(loid)s individually has been associated with neural tube defects(NTDs).However,the impacts of PAH and metal(loid)co-exposure and potential interaction effects on NTD risk remain unclear.We conducted a case-control study in China among population with a high prevalence of NTDs to investigate the combined effects of PAH and metal(loid)exposures on the risk of NTD.Methods Cases included 80 women who gave birth to offspring with NTDs,whereas controls were 50 women who delivered infants with no congenital malformations.We analyzed the levels of placental PAHs using gas chromatography and mass spectrometry,PAH-DNA adducts with 32P-post-labeling method,and metal(loid)s with an inductively coupled plasma mass spectrometer.Unconditional logistic regression was employed to estimate the associations between individual exposures and NTDs.Least absolute shrinkage and selection operator(LASSO)penalized regression models were used to select a subset of exposures,while additive interaction models were used to identify interaction effects.Results In the single-exposure models,we found that eight PAHs,PAH-DNA adducts,and 28 metal(loid)s were associated with NTDs.Pyrene,selenium,molybdenum,cadmium,uranium,and rubidium were selected through LASSO regression and were statistically associated with NTDs in the multiple-exposure models.Women with high levels of pyrene and molybdenum or pyrene and selenium exhibited significantly increased risk of having offspring with NTDs,indicating that these combinations may have synergistic effects on the risk of NTDs.Conclusion Our findings suggest that individual PAHs and metal(loid)s,as well as their interactions,may be associated with the risk of NTDs,which warrants further investigation.
基金supported by the Science&Technology Program of Guizhou Province(Nos.QKHPTRC-GCC[2022]039-1,QKHPTRC-CXTD[2022]014,and QKHHBZ[2020]3002)the Scientific Research Programof Guizhou Provincial Department of Education(No.QJJ[2023]019).
文摘Anemia is still prevalent among low and middle-income countries,posing serious family and social burdens.However,scarce studies provided evidence for real-world exposure to polycyclic aromatic hydrocarbons(PAHs)and anemia among pregnant women,as well as involved biological mechanisms.So,we conducted this study including 1717 late pregnant women fromZunyi Birth Cohort and collected urine samples for PAHs metabolites detection.Logistic regression and restricted cubic spline regression were used to examine exposuredisease risks and dose-response relationships.We conducted Bayesian kernel machine regression,weighted quantile sum regression,and quantile g-computation regression to fit the joint impacts of multiple PAHs in the real-world scenario on hypocalcemia and anemia.Results showed single exposure to 2-OHNap,2-OHFlu,9-OHFlu,1-OHPhe,2-OHPhe,3-OHPhe,and 1-OHPyr(all P-trend<0.05)increased the risks of hypocalcemia and anemia.Moreover,PAHs mixture was significantly related to higher risks of hypocalcemia and anemia,with 3-OHPhe and 1-OHPyr identified as their major drivers,respectively.Importantly,hypocalcemia served as a significant biological mechanism responsible for PAHs and anemia.Our findings suggest that individual and joint exposure to PAHs during late pregnancy elevate the anemia risk,and calcium supplementation might be a low-cost intervention target for reducing the PAHs-related impairment on anemia for pregnant women.
基金supported by the National Natural Science Foundation of China(No.52300005)China Postdoctoral Science Foundation(No.2023TQ0098)+5 种基金Heilongjiang Postdoctoral Fund(No.LBH-Z23175)Heilongjiang Touyan Innovation Team Program(No.HIT-SE-01)the Crossover Fund of Medical Engineering Science of Harbin Institute of Technology(No.IR2021107)the National Natural Science Foundation of International(Regional)Cooperation and Exchange Project(No.51961125104)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS15)the Ecological and Environmental Protection Research Project of Heilongjiang Province(No.HST2022ST006).
文摘Halogenated aromatic disinfection byproducts(DBPs)are gradually receiving attention due to their high detection frequency and usually higher toxicity than regulated DBPs.In this study,we established a solid phase extraction(SPE)-LC-MS/MS method to simultaneously trace analyze 59 halogenated aromatic DBPs.The limits of detection and limits of quantification of halogenated aromatic DBPs ranged from 0.03 to 135.23 ng/L and from 0.1 to 450.76 ng/L,respectively.The range of recoveries and relative standard deviation(RSD)in river water were between 72.41%to 119.54%and 1.86%to 16.03%,respectively.Therefore,this method can be used to accurately analyze trace levels of halogenated aromatic DBPs in drinking water.The occurrence and transformation of halogenated aromatic DBPs were explored based on this method.In the chlorinated simulated source water and chlorinated river water,20 and 45 halogenated aromatic DBPs were determined,respectively.The active halogen species(HOCl,HOBr,and HOI)first reacted with natural organic matter(NOM)to form halogenated aromatic DBPs.Then,chlorine further reacted with the halogenated aromatic DBPs to convert them into small-molecule halogenated aliphatic DBPs through oxidation,electrophilic substitution,and hydrolysis reaction,etc.In the chlorinated simulated source water,chlorinated river water,and tap water,the toxicity contribution of bromoacetic acids(Br-HAAs)accounted for themajority(>71.16%).Given that halogenated aromatic DBPs are intermediate products of halogenated aliphatic DBPs,controlling the formation of halogenated aromatic DBPs is beneficial in decreasing the formation of halogenated aliphatic DBPs,thereby diminishing the toxicity of drinking water.
基金the technology projects entrusted by enterprises and institutions(2022KJ000803)the Beijing Natural Science Foundation(No.7242184)the project that Study on the role of ASGR1 in regulating chaperone mediated autophagy involved in methyl tert-butyl ether–induced hepatic lipotoxicity(XSKY2024).
文摘Objective To investigate the association of various polycyclic aromatic hydrocarbon(PAH)metabolites with diverse subtypes of cardiovascular disease(CVD)risk.Methods A novel predicting risk of cardiovascular disease EVENTs PREVENT equation was used to estimate the 10-year diverse subtypes of CVD risk,and their associations with PAH metabolites were analyzed using multiple logistic regression models,the weighted quantile sum(WQS)model,the quantile g-computation(qgcomp)model,and a stratified analysis of subgroups.Results For this study,six thousand seven hundred and forty-five participants were selected,and significant positive associations were observed between PAHs,naphthalene(NAP),and fluorene(FLU),and the risks of total CVD,atherosclerotic cardiovascular disease(ASCVD),and heart failure(HF).NAP and FLU were the primary contributors to the effects of PAH mixtures,and their associations with total CVD,ASCVD,and HF risk were significant in younger participants(30≤age<50 years);however,the associations of phenanthrene(PHEN)with ASCVD,HF,coronary heart disease(CHD),and stroke were dominant in aging participants(age≥50 years).Notably,pyrene(PYR)was negatively associated with the risk of ASCVD,HF,CHD,and stroke.Similarly,negative associations of PYR with the four CVD subtypes were noticeable in aging participants.Conclusion Different PAHs metabolites had different impacts on each CVD subtype among different age groups.Notably,the protective effects of PYR on ASCVD,HF,CHD,and stroke were noticeable in aging individuals.
基金support of the Project of the Russian Federation represented by the Ministry of Science and Higher Education of the Russian Federation:assistance in the form of grants in accordance with paragraph 4 of article 78.1 of the Budget Code of the Russian Federation(agreement No.075-15-2023-592 on subject No.13.2251.21.0216)CEREMAC-G own research fund and a Support special fi nancier of the Ministry of Higher Education,Scientifi c Research and Innovation(MESRSI)of the Republic of Guinea.
文摘The concentrations of polycyclic aromatic hydrocarbons(PAHs),their sources and toxic equivalent(TEQ)in soil,suspended matter and bottom sediments in the Fatala River Basin ecosystem were obtained for the fi rst time to our knowledge.Determination of 14 PAHs(ΣPAHs)was carried out using high-performance liquid chromatography.TheΣPAH content in soil ranged from 13 to 50,920(Me=820)ng/g.The composition of PAHs(high proportion of low-molecular-weight compounds and values of individual PAHs ratios)refl ected the signifi cant oil pollution of soil.Contaminated soil was localated in the central part of the Fatala River Basin.The median benzo(a)pyrene toxic equivalent of soil at the study site was 1.08(range,0.05 to 53.16)ngTEQ/g,showing generally low soil toxicity.TheΣPAH content in suspended matter was in the range of 33 to 1316(Me=309)ng/L.TheΣPAH content in bottom sediments ranged from 36 to 6943(Me=478)ng/L,corresponding to clean and moderately contaminated sediments.TheΣPAH content in bottom sediments depended on the anthropogenic impact on the Fatala River Basin territory and the bottom sediment features.Bottom sediments and suspended matter had a low toxic equivalent.
基金supported by the National Natural Science Foundation of China(22275072 and 62105184)the Natural Science Foundation of Guangdong Province(2020A1515010622)+1 种基金the Project of Science and Technology of Guangzhou(2024A04J3712)the Teli Young Scholar Program of Beijing Institute of Technology.
文摘Donor-acceptor(D-A)compounds are particularly important in optoelectronic and biological applications.However,they are normally synthesized in the presence of transition metal catalysts.Herein,we report a metal-free method by a complexmediated nucleophilic aromatic substitution of aryl nitriles with amines.The method can lead to rich D-A type aggregation-induced emission luminogens(AIEgens)with tunable properties.They emit from deep-blue to yellow-green and possess high photoluminescence quantum yields up to 70.5%in the aggregate state.Interestingly,the suppression of intramolecular flapping is proved to play an indispensable role in the AIE behavior,which is different from the mechanism met in other AIEgens.Moreover,the biocompatible AIEgens possess specific staining of lipid droplets in HeLa cells and the superiority of identifying fatty liver over traditional Oil Red O staining is exhibited.
基金Sponsored by Provincial-level Undergraduate Innovation and Entrepreneurship Training Program of Anhui Xinhua University in 2023(S202312216045)Key Research Project of Natural Sciences in Colleges and Universities in Anhui Province(2023AH051816)General Teaching Research Project in Anhui Province(2022jyxm665).
文摘Taking Hefei City as the research site,preliminary investigations were conducted into its aromatic plant resources to fill the gap in systematic research and establish a localized database in this study.Based on the analysis and organization of data on Hefei’s aromatic plant resources,the Analytic Hierarchy Process(AHP)was employed to quantitatively evaluate their comprehensive value(ecology,landscape,economy,etc.),so as to construct a comprehensive evaluation model for these resources and screen high-value plant species.Finally,based on the above objective investigation and analysis,recommendations were proposed for the landscape application of aromatic plant resources in Hefei,aiming to build an integrated ecological-landscape-economic value system.
基金supported by the Weiqiao-UCAS Special Projects on Low-Carbon Technology Development(No.GYY-DTFZ-2022-007)the Fundamental Research Funds for the Central Universities(No.E0E48927×2)the National Natural Science Foundation of China(No.21677145).
文摘Particulate matter(PM)can cause adverse health effects by overproducing reactive oxygen species(ROS).Although the ability of PM to induce ROS generation depends on its composi-tion and environmental factors.This study explores how photo-oxidation affects ROS gen-eration from aromatic compounds(ACs,including catechol(CAT),phthalic acid(PA),and 4,4-oxydibenzoic acid(4,4-OBA))and their mixtures with transition metals(TMs,includ-ing Fe(II),Mn(II),and Cu(II))using Fourier-transform infrared(FTIR)and Ultraviolet-visible spectroscopy(UV-Vis).Results showed that photo-oxidation facilitated ROS generation from ACs.CAT-Fe(II)/Cu(II)showed synergistic effects,but 4,4-OBA-Fe(II)/Cu(II)showed antag-onistic effects.ACs-Mn(II)and PA-Fe(II)/Cu(II)exhibited synergistic effects first and then showed antagonistic effects.The different interactions were due to complexation between ACs and TMs.The photo-oxidized ACs-TMs significantly enhanced ROS generation com-pared with ACs-TMs.The study suggested the photo-oxidation mechanism involved that the transfer ofπ-electrons from the ground to an excited state in benzene rings and func-tional groups,leading to the breakage and formation of chemical bonds or easierπ-electron transfer from ACs to TMs.The former could generate ROS directly or produce polymers that promoted ROS generation,while the latter promoted ROS generation by transferringπ-electrons to dissolved oxygen quickly.Our study revealed that both interactions among components and photo-oxidation significantly influenced ROS generation.Future studies should integrate broader atmospheric factors and PM components to fully assess oxidative potential and health impacts.
基金supported by the National Key Research and Development Program of China (Grant No. 2023YFC3706203)the National Natural Science Foundation of China (Grant Nos. 91644214, 22361162668, and 22406109)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2024M751797)Shandong Postdoctoral Science Foundation (SDCX-ZG-202400178)
文摘Enhanced mass concentrations of aromatic-derived secondary organic aerosol(SOA)are frequently observed during humid-haze events.However,the influencing mechanism of relative humidity(RH)in aromatic-derived SOA formation remains incompletely understood.Here,the RH dependence of SOA formation in the presence of NOx was explored by a series of chamber experiments for toluene(TOL)and 1,3,5-trimethylbenzene(TMB)photooxidation.The yield of TOL SOA and TMB SOA increased by 221%and 52%with increasing RH from~8%to~70%,respectively.Analytical results from a high-resolution mass spectrometer showed that SOA constituents with high oxygen content(O/C>0.6)were more abundant in SOA formed in the~70%RH experiment.The elevated yields and O/C of SOA could be attributed to the promoted formation and particle-phase diffusivity of highly oxidized molecules.In addition,in comparison with TMB,TOL could produce more unsaturated aldehydes,which are oxidized into carboxylic acids with high O/C,leading to a more sensitive response of TOL SOA formation to the change in RH.Our work provides mechanistic insights into RH roles in aromatic SOA formation and is helpful for a better understanding of humid-haze events.
基金supported by the National Natural Science Foundation of China(22478007)the National Key Research and Development Program of China(2022YFB3805100)the Anhui Provincial Natural Science Foundation(2023AH050728)。
文摘One of the main challenges in oil-water separation of traditional Chinese medicines(TCM)is to obtain essential oils from the aromatic water of TCM.In this study,silicon dioxide/polyvinylidene fluoride(SiO_(2)/PVDF)membranes were prepared using nonsolvent induce phase separation.Then polydimethylsiloxane(PDMS)was coated to obtain PDMS/SiO_(2/)PVDF membranes.Separated essential oils and water from aromatic water in the gaseous state by vapor permeation membrane separation technology.The relationship between membrane structure and membrane separation effect was investigated.Response surface methodology was used to develop a quadratic model for the separation factor,membrane permeation separation index and membrane preparation process.The optimal process parameters for the membrane separation were 12.31%(mass)concentration of PVDF solution,9.6%(mass)of N,Ndimethylacetamide in the solidification bath,and 0.2 g hydrophobic nano-SiO_(2)incorporation,with a separation factor of 14.45,and a membrane flux of 1203.04 g·m^(-2)·h^(-1).Compared with the PDMS/PVDF membranes,the separation factor and membrane flux were increased by 68.59%and 3.46%,respectively.Compared with the SiO_(2)/PVDF membranes,the separation factor and membrane flux were increased by478%and 79.33%,respectively.Effectively mitigated the limitations of traditional polymer membrane material performance affected by the"trade-off"effect.Attenuated total internal reflection-Fourier transform infrared spectroscopy,contact angle,scanning electron microscopy and energy dispersive spectroscopy were used to characterize the PDMS/SiO_(2)/PVDF membranes,and gas chromatography was used to characterize the permeate.In addition,the contents of L-menthol,L-menthone,menthyl acetate and limonene in the permeate,conformed to the European Pharmacopoeia standards.This study provided an effective preparation strategy of a feasible hydrophobic powder polymer membrane for the separation of essential oils from gaseous peppermint aromatic water.
基金supported by the Ministry of Science and Technology of China[grants 2021YFA1302602]the National Natural Science Foundation of China[grants 21925406,21991082,21921004]the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0540000 and YSBR-068).
文摘Although the parallel incorporation of fluorinated aromatic amino acids(FAAAs)into proteins has been explored since 2010,the corresponding ^(19)F NMR investigation has been lacking to date.To assess the potential of the parallel incorporation of FAAAs in studies of protein structure,dynamics and interactions,we examine the protein yields,fluorine incorporation efficiencies,and ^(19)F NMR spectra upon simultaneously incorporating FAAAs including 3-fluorotyrosine(3FY),4-fluorophenylalanine(4FF)and 5-fluorotryptophan(5FW)into two model proteins:the structured protein GB1 domain(GB1)and the intrinsically disordered protein a-synuclein(a-syn).We found that the simultaneous incorporation of 3FY and 5FW achieved higher efficiency than combinations of 4FF and 5FW,4FF and 3FY,or 3FY,4FF and 5FW.Moreover,incorporating more types of FAAAs leads to a reduction in overall yield.The ^(19)F spectra of 3FY,4FF and 5FW residues in α-syn and GB1 exhibited good dispersion of chemical shifts.However,the GB1 spectrum showed complexity due to incomplete fluorination and interactions within aromatic cluster.This complexity could be significantly reduced by supplementing the medium with natural aromatic amino acids.To validate the advantage of ^(19)F NMR spectrum,we use 3FY-4FF-5FW-F94W-α-syn to investigate the interaction between α-syn and sodium dodecyl sulphate(SDS)micelle.Our study demonstrates that ^(19)F NMR spectroscopy of proteins with parallel incorporation of FAAAs provides a valuable tool for investigating protein conformation,dynamics and interactions.