[Objective] Application of P and K was not reasonable in southwest rice producing area, with no effective method for guiding application of P and K. This study aimed to conduct experiments with the same N application ...[Objective] Application of P and K was not reasonable in southwest rice producing area, with no effective method for guiding application of P and K. This study aimed to conduct experiments with the same N application and different P and K application in different ecological points, to explore a scientific and efficient management method of P and K nutrients and provide guidance for application of P and K in rice production. [Method] Hybrid rice Chuanxiang9838 was used as experimental material to study the relationship among application amount of P and K, utilization rates of P and K, rice yield and rice quality in seven ecological points of four provinces (municipalities) including Sichuan, Chongqing, Yunnan and Guizhou. The application amount per hectare of P was 37.5, 75, 112.5 and 150 kg, respectively; the application amount per hectare of K was 45, 135 and 180 kg, respectively. A total of 10 treatments were set for split-plot design with three replications. [Result] Yield of Chuanxiang9838 significantly varied in different experimental locations and under different levels of P and K, interaction of ecological point and different P and K treatments varied significantly. Yield had reached the maximum in ecological point of Yunnan Binchuan and in treatment with application of N 150 kg P 75 kg K 90 kg. Efficient utilization rates of P and K varied in each ecological point, efficient application amount of P and K in Sichuan Dongpo, Sichuan Luxian, Guizhou Xiaohe and Chongqing Yongchuan was the same, while that in Sichuan Guanghan, Sichuan Zhongjiang and Yunnan Binchuan was different. The main objective of high-yield rice production was to increase the number of effective panicles per hectare and seed setting rate. Rice quality was clustered into 2 categories by locations and 6 categories by treatments. [Conclusion] Prediction models of efficient application of P and K in rice production were established, which provided guidance for high-yield rice production and rational and efficient utilization of P and K in southwest rice area.展开更多
[Objective] This study aimed to explore an optimum application amount of nitrogen for cotton cultivation. [Method] In this study, a field experiment was conducted to investigate the effects of nitrogen application amo...[Objective] This study aimed to explore an optimum application amount of nitrogen for cotton cultivation. [Method] In this study, a field experiment was conducted to investigate the effects of nitrogen application amount on the growth characteristics, boll development and lint yield of high quality cotton line FZ-1. [Result] Compared with the nitrogen level of 225 kg/hm2, the lint yield had increased by 28.46% and 18.73%, respectively, with the nitrogen application amount of 300 and 375 kg/hm2. When the nitrogen application amount had increased from 225 to 300 kg/hm2, boll number per plant, boll weight and lint yield had significantly increased. At the nitrogen level of 375 kg/hm2, however, the effects of increasing lint yield were significantly less than that at the nitrogen level of 300 kg/hm2. Compared with the nitrogen levels of 225 and 375, 300 kg/hm2 of nitrogen was the optimum application amount to improve the plant height, daily increment of plant height, number of fruit branches, number ratio of nodes to fruit branches, boll volume and seed cotton weight per boll. [Conclusion] The rational management of nitrogen is the most effective way to promote the growth and development of cotton plants, ensure high yielding ability and minimize the environmental pollution caused by the overuse of nitrogen. This study had provided a sound nitrogen application strategy for the cultivation of this high-quality cotton line in the field plantation.展开更多
[Objective] The paper was to study the nitrogen application amount and nitrogen application model for high grade hybrid rapeseed (Brassica napus L.) to get high yield. [Method] With "Youyan 599" and "Sanbei 98" ...[Objective] The paper was to study the nitrogen application amount and nitrogen application model for high grade hybrid rapeseed (Brassica napus L.) to get high yield. [Method] With "Youyan 599" and "Sanbei 98" as materials, using quadratic regression orthogonal gyration combination design, the impact of nitrogen application amount during various periods on rapeseed yield was studied. [Result] The combinations of factors to obtain the highest yield index (2 898.211 kg / hm 2 ) of "Youyan 599" were as follows: living rape fertilizer 89.27 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 101.12 kg / hm 2 , total nitrogen application amount 310.39 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12th lunar month fertilizer were 28.76%, 38.66% and 32.58%, respectively. The combinations of factors to obtain the highest yield index (2 870.14 kg/hm 2 ) of "Sanbei 98" were as follows: living rape fertilizer 120 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 37.55kg / hm 2 , total nitrogen application amount 277.55 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 43.24%, 43.24% and 13.53%, respectively. The combinations of factors to obtain the highest yield index of two combined varieties (2 813.82 kg/hm 2 )were as follows: living rape fertilizer 120 kg/hm 2 , opening fertilizer 120 kg/hm 2 , 12 th lunar month fertilizer 76.23 kg/hm 2 , total nitrogen application amount 316.23 kg/hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 37.95% , 37.95% and 24.11% , respectively. [Conclusion] The paper provided theoretical basis for high yield cultivation of high grade hybridized rapeseed.展开更多
[Objective] The aim of this study is to investigate the optimum application amount of nitrogen in Lycium barbarum based on considering the relationship between main secondary metabolites and polysaccharide.[Method]Und...[Objective] The aim of this study is to investigate the optimum application amount of nitrogen in Lycium barbarum based on considering the relationship between main secondary metabolites and polysaccharide.[Method]Under field conditions,the effects of different application amounts of nitrogen on main secondary metabolites of betaine,carotenoid and flavone of Lycium barbarum and the relationship between main secondary metabolites and polysaccharide.[Result] The main secondary metabolites of betaine,carotenoid and flavone of Lycium barbarum varied under different application amounts of nitrogen.The proper application amount of nitrogen(600-900 kg/hm2)was beneficial to the formation and accumulation of secondary metabolites such as carotenoids.Correlation analysis results showed that polysaccharide were negatively correlated with betaine,carotenoid and flavone at significant probability level.[Conclusion]Considering the relationship between the output and quality of the fruits of Lycium barbarum,the optimum nitrogen application amount should be 600-900 kg/hm2.展开更多
[ Objective] The aim of the research was to provide reference for reasonable application of nitrogen fertilizer for high yield.cultivation of hybrid rape cuhivar Youyan 9 and Youyan 10. [ Method] The net increment cha...[ Objective] The aim of the research was to provide reference for reasonable application of nitrogen fertilizer for high yield.cultivation of hybrid rape cuhivar Youyan 9 and Youyan 10. [ Method] The net increment changes of individual plant fresh weight and dry matter weight of Youyan 9 and Youyan 10 with different nitrogen application treatments were studied. [ Result] The differences among average fresh weight increments of individual plant and average dry matter weight increment of individual plant with different treatments reached 0. 01 extremely significant level. Fresh weight increment and dry matter weight net increment of individual plant declined gradually with the increase of nitrogen application. In growtheourse ,fresh weight net increment of individual plant increased firstly then decreased and the maximum was in beginning flowering stage, besides that dry matter net increment increased gradually and the maximum was in mature period. The correlations among fresh net increment, dry matter weight net increment and yield net increment were positive or extremely positive. [ Conclusion] Under experimental condition, when nitrogen application was 225 kg/hm^2, hybrid rape Yanyou 9 and Yanyou 10 with low erucic,low glucosinolate could obtain high yield.展开更多
This study aimed to investigate the effects of reducing application amount of base fertilizer and increasing application time of leaf fertilizer on corn yield so as to find out the most economical fertilization way fo...This study aimed to investigate the effects of reducing application amount of base fertilizer and increasing application time of leaf fertilizer on corn yield so as to find out the most economical fertilization way for corn. On the basis of protecting environment, the economic benefits will be also increased. The results showed that the corn yield was increased with the increase of application amount of base fertilizer, and was also increased with the increase of application time of leaf fertilizer.For each time of spaying of leaf fertilizer, the corn yield was increased 258-592.5kg/hm^2 with increase amplitude ranging from 2.3%-5.6%.展开更多
Environmental DNA(eDNA)technology has revolutionized biodiversity monitoring with its non-invasive,sensitive,and cost-efficient approach.This paper systematically reviews eDNA advancements,examining its applications i...Environmental DNA(eDNA)technology has revolutionized biodiversity monitoring with its non-invasive,sensitive,and cost-efficient approach.This paper systematically reviews eDNA advancements,examining its applications in aquatic and terrestrial ecosystems and assessing China’s standardization progress.It delineates four developmental phases from single-species detection to high-throughput sequencing,and highlights China’s contribution to the development of technical standards.While significant progress has been made,challenges persist in quantitative accuracy,methodological consistency,and large-scale implementation.Future efforts should prioritize enhanced standardization,improved quantification techniques,broader applications,and international collaboration to drive innovation in eDNA technology.展开更多
Standards are the common language that consolidates global consensus and builds the most solid foundation for international partnerships.They are the cornerstone for global sustainable and high-quality development.You...Standards are the common language that consolidates global consensus and builds the most solid foundation for international partnerships.They are the cornerstone for global sustainable and high-quality development.Young students,with their active and vibrant minds,represent the future and hope of standardization.展开更多
Diabetic retinopathy(DR)is a leading cause of vision loss among working-age populations,with early screening significantly reducing the risk of blindness.However,resource-limited regions often face challenges in DR sc...Diabetic retinopathy(DR)is a leading cause of vision loss among working-age populations,with early screening significantly reducing the risk of blindness.However,resource-limited regions often face challenges in DR screening due to a shortage of ophthalmologists.This study reports the implementation and outcomes of the Chinese local standard DB52/T 1726-2023,Regulations for the application of diabetic retinopathy screening artificial intelligence,in Cambodian healthcare institutions.A pilot DR screening program with independent operational capability is established by providing a non-mydriatic fundus camera and deploying a localized diabetic retinopathy artificial intelligence(DR-AI)screening platform at the Cambodia-Kingdom Friendship Hospital in Phnom Penh,along with comprehensive training.From January to August 2025,a total of 565 patients with type 2 diabetes were screened,yielding a DR detection rate of 26.0%(147 cases).Research findings demonstrate that applying mature Chinese DR-AI screening standards and technological solutions through international collaboration in regions with a scarcity of ophthalmic professionals is both feasible and effective.This project serves as a reference for promoting DR-AI in resource-constrained countries and regions,highlighting its significant potential to leverage AI in addressing the global burden of chronic diseases and advancing the modernization of health systems.展开更多
Liver transplantation(LT)remains the optimal life-saving intervention for patients with end-stage liver disease.Despite the recent advances in LT several barriers,including organ allocation,donor-recipient matching,an...Liver transplantation(LT)remains the optimal life-saving intervention for patients with end-stage liver disease.Despite the recent advances in LT several barriers,including organ allocation,donor-recipient matching,and patient education,persist.With the growing progress of artificial intelligence,particularly large language models(LLMs)like ChatGPT,new applications have emerged in the field of LT.Current studies demonstrating usage of ChatGPT in LT include various areas of application,from clinical settings to research and education.ChatGPT usage can benefit both healthcare professionals,by decreasing the time spent on non-clinical work,but also LT recipients by providing accurate information.Future potential applications include the expanding usage of ChatGPT and other LLMs in the field of LT pathology and radiology as well as the automated creation of discharge summaries or other related paperwork.Additionally,the next models of ChatGPT might have the potential to provide more accurate patient education material with increased readability.Although ChatGPT usage presents promising applications,there are certain ethical and practical limitations.Key concerns include patient data privacy,information accuracy,misinformation possibility and lack of legal framework.Healthcare providers and policymakers should collaborate for the establishment of a controlled framework for the safe use of ChatGPT.The aim of this minireview is to summarize current literature on ChatGPT in LT,highlighting both opportunities and limitations,while also providing future possible applications.展开更多
Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for...Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.展开更多
Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistan...Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistance to salt stress.In this study,we used corn steep liquor(CSL),myo-inositol(MI),and their combination to improve salt tolerance in Chinese cabbage(Brassica rapa L.ssp.pekinensis)under salt stress conditions.All three treatments significantly increased plant biomass and nutrient uptake,and improved soil physicochemical properties,while alleviating oxidative damage and ion toxicity.展开更多
The integration of Artificial Intelligence(AI)and Machine Learning(ML)into groundwater exploration and water resources management has emerged as a transformative approach to addressing global water challenges.This rev...The integration of Artificial Intelligence(AI)and Machine Learning(ML)into groundwater exploration and water resources management has emerged as a transformative approach to addressing global water challenges.This review explores key AI and ML concepts,methodologies,and their applications in hydrology,focusing on groundwater potential mapping,water quality prediction,and groundwater level forecasting.It discusses various data acquisition techniques,including remote sensing,geospatial analysis,and geophysical surveys,alongside preprocessing methods that are essential for enhancing model accuracy.The study highlights AI-driven solutions in water distribution,allocation optimization,and realtime resource management.Despite their advantages,the application of AI and ML in water sciences faces several challenges,including data scarcity,model reliability,and the integration of these tools with traditional water management systems.Ethical and regulatory concerns also demand careful consideration.The paper also outlines future research directions,emphasizing the need for improved data collection,interpretable models,real-time monitoring capabilities,and interdisciplinary collaboration.By leveraging AI and ML advancements,the water sector can enhance decision-making,optimize resource distribution,and support the development of sustainable water management strategies.展开更多
Effects of different levels of compost application on the amounts and percentage distribution of organic N forms in whole soils and particle size fractions were investigated. Soil samples were collected from three plo...Effects of different levels of compost application on the amounts and percentage distribution of organic N forms in whole soils and particle size fractions were investigated. Soil samples were collected from three plots: (a) F, only chemical fertilizers;(b) F+LC, chemical fertilizers plus low level of compost;(c) F+HC, chemical fertilizers plus high level of compost. Each soil sample was divided into five fractions: coarse sand-sized aggregate (CSA), medium sand-sized aggregate (MSA), fine sand-sized aggregate (FSA), silt-sized aggregate (SIA) and clay-sized aggregate (CLA) fractions. The sand fractions were subdivided into decayed plants (DP) and mineral particles (MP). The amounts of total N and different organic N forms in the whole soils as well as size fractions generally increased with increasing the amount of compost. In the whole soils, percentage distribution of non-hydrolysable-N and amino sugar-N increased by compost application while the distribution values of the hydrolysable ammonium- N and unidentified-N decreased. The application did not affect the distribution degree of amino acid-N. In the size fractions, the distribution values of most organic N forms increased in the CSA-DP, MSA-DP and FSA-DP fractions by compost application. In the CLA fractions, the amounts and percentage distribution of organic N forms were the highest, although the application caused decreases in their distribution values. These findings indicate that the CLA fraction merit close attention as an important reservoir of various organic N.展开更多
A new highly sensitive spectrophotometric method has been developed for the determination of micro amounts of bismuth (Ⅲ), based on the formation of Bi (Ⅲ)—meso—tetrakis—(4—N—trimethylammonium phenyl) porphine ...A new highly sensitive spectrophotometric method has been developed for the determination of micro amounts of bismuth (Ⅲ), based on the formation of Bi (Ⅲ)—meso—tetrakis—(4—N—trimethylammonium phenyl) porphine [T (4TMAP) P] complex. In the presence of Cd (Ⅱ), Bi(Ⅲ) reacts almost instantaneously with T (4TMAP)P in a 0. 6 mol/l NaAc—HAC buffer (PH5.8) at room temperature. The composition of the complex is T(4TMAP)P: Bi=1:1. The absorbance complex obeys Beer's law over the Bi(Ⅲ) concentration range 0.1—1.4 μg/ml. The linear relative coefficient γ is 0.9998. The apparent molar absorptivity was 1.75×10~5 1. mol^(-1). cm^(-1) at 463nm. The relative standard deviation of the method is 1.50% for Bi(Ⅲ) 7ug/10ml (10 determinations). The interference of foreign ions has been examined. This simple and rapid method can be applied to the assay of Bi(Ⅲ) in some tablets directly.展开更多
α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organi...α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organic compounds with diverse structures.Herein,the advances in the research areas ofα-trifluoromethyl ketone synthesis and their defluorination reactions are reviewed.Discussion on the mechanisms of the typical reactions has also been provided,in hope of affording some guides to the chemistry ofα-trifluoromethyl ketones in the synthetic methods toward themselves and their derivatives.展开更多
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC...Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
Grape crops are a great source of income for farmers.The yield and quality of grapes can be improved by preventing and treating diseases.The farmer’s yield will be dramatically impacted if diseases are found on grape...Grape crops are a great source of income for farmers.The yield and quality of grapes can be improved by preventing and treating diseases.The farmer’s yield will be dramatically impacted if diseases are found on grape leaves.Automatic detection can reduce the chances of leaf diseases affecting other healthy plants.Several studies have been conducted to detect grape leaf diseases,but most fail to engage with end users and integrate the model with real-time mobile applications.This study developed a mobile-based grape leaf disease detection(GLDD)application to identify infected leaves,Grape Guard,based on a TensorFlow Lite(TFLite)model generated from the You Only Look Once(YOLO)v8 model.A public grape leaf disease dataset containing four classes was used to train the model.The results of this study were relied on the YOLO architecture,specifically YOLOv5 and YOLOv8.After extensive experiments with different image sizes,YOLOv8 performed better than YOLOv5.YOLOv8 achieved 99.9%precision,100%recall,99.5%mean average precision(mAP),and 88%mAP50-95 for all classes to detect grape leaf diseases.The Grape Guard android mobile application can accurately detect the grape leaf disease by capturing images from grape vines.展开更多
基金Supported by Project of Rice Industry Technology System ConstructionGrain Production Technology Engineering Project200903002 Project~~
文摘[Objective] Application of P and K was not reasonable in southwest rice producing area, with no effective method for guiding application of P and K. This study aimed to conduct experiments with the same N application and different P and K application in different ecological points, to explore a scientific and efficient management method of P and K nutrients and provide guidance for application of P and K in rice production. [Method] Hybrid rice Chuanxiang9838 was used as experimental material to study the relationship among application amount of P and K, utilization rates of P and K, rice yield and rice quality in seven ecological points of four provinces (municipalities) including Sichuan, Chongqing, Yunnan and Guizhou. The application amount per hectare of P was 37.5, 75, 112.5 and 150 kg, respectively; the application amount per hectare of K was 45, 135 and 180 kg, respectively. A total of 10 treatments were set for split-plot design with three replications. [Result] Yield of Chuanxiang9838 significantly varied in different experimental locations and under different levels of P and K, interaction of ecological point and different P and K treatments varied significantly. Yield had reached the maximum in ecological point of Yunnan Binchuan and in treatment with application of N 150 kg P 75 kg K 90 kg. Efficient utilization rates of P and K varied in each ecological point, efficient application amount of P and K in Sichuan Dongpo, Sichuan Luxian, Guizhou Xiaohe and Chongqing Yongchuan was the same, while that in Sichuan Guanghan, Sichuan Zhongjiang and Yunnan Binchuan was different. The main objective of high-yield rice production was to increase the number of effective panicles per hectare and seed setting rate. Rice quality was clustered into 2 categories by locations and 6 categories by treatments. [Conclusion] Prediction models of efficient application of P and K in rice production were established, which provided guidance for high-yield rice production and rational and efficient utilization of P and K in southwest rice area.
基金Supported by Natural Science Foundation of China(NSFC No.30771272,31171483)the Priority Academic Development Program of Jiangsu Higher Education Institutions+1 种基金Jiangsu Innovation Project for Agriculture Science and Technology(cx(11)2054)Jiangsu Agriculture Science and Technology Support Program(SBE2010307)~~
文摘[Objective] This study aimed to explore an optimum application amount of nitrogen for cotton cultivation. [Method] In this study, a field experiment was conducted to investigate the effects of nitrogen application amount on the growth characteristics, boll development and lint yield of high quality cotton line FZ-1. [Result] Compared with the nitrogen level of 225 kg/hm2, the lint yield had increased by 28.46% and 18.73%, respectively, with the nitrogen application amount of 300 and 375 kg/hm2. When the nitrogen application amount had increased from 225 to 300 kg/hm2, boll number per plant, boll weight and lint yield had significantly increased. At the nitrogen level of 375 kg/hm2, however, the effects of increasing lint yield were significantly less than that at the nitrogen level of 300 kg/hm2. Compared with the nitrogen levels of 225 and 375, 300 kg/hm2 of nitrogen was the optimum application amount to improve the plant height, daily increment of plant height, number of fruit branches, number ratio of nodes to fruit branches, boll volume and seed cotton weight per boll. [Conclusion] The rational management of nitrogen is the most effective way to promote the growth and development of cotton plants, ensure high yielding ability and minimize the environmental pollution caused by the overuse of nitrogen. This study had provided a sound nitrogen application strategy for the cultivation of this high-quality cotton line in the field plantation.
基金Supported by Construction Project of National Rapeseed Modern Industrial Technology System (nycytx-00563)Guizhou Academy of Agricultural Sciences "Research of High Yield and High Quality Cultivation Technology for High Grade Hybrid Rapeseed with High Oil" [C ZX(2007)015]+2 种基金Department of Agriculture of Guizhou Province "Research, Promotion and Application of High Yield Cultivation Technology for Hybridized Rapeseed of New Variety Youyan 599" [QNYZZ (2009) 007]Guizhou Academy of Agricultural Sciences "Large Area Intermediate Experiment, Promotion and Application of Hybridized Rapeseed Youyan 599" [QNKZX (2009) 030]Department of Agriculture of Guizhou Province "Integrated Innovation of Seed Production Techniques and Large Area Demonstration for New High Oil Rapeseed Hybrid Variety Sanbei 98 [QKH NY (2010) 3087]~~
文摘[Objective] The paper was to study the nitrogen application amount and nitrogen application model for high grade hybrid rapeseed (Brassica napus L.) to get high yield. [Method] With "Youyan 599" and "Sanbei 98" as materials, using quadratic regression orthogonal gyration combination design, the impact of nitrogen application amount during various periods on rapeseed yield was studied. [Result] The combinations of factors to obtain the highest yield index (2 898.211 kg / hm 2 ) of "Youyan 599" were as follows: living rape fertilizer 89.27 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 101.12 kg / hm 2 , total nitrogen application amount 310.39 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12th lunar month fertilizer were 28.76%, 38.66% and 32.58%, respectively. The combinations of factors to obtain the highest yield index (2 870.14 kg/hm 2 ) of "Sanbei 98" were as follows: living rape fertilizer 120 kg / hm 2 , opening fertilizer 120 kg / hm 2 , 12 th lunar month fertilizer 37.55kg / hm 2 , total nitrogen application amount 277.55 kg / hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 43.24%, 43.24% and 13.53%, respectively. The combinations of factors to obtain the highest yield index of two combined varieties (2 813.82 kg/hm 2 )were as follows: living rape fertilizer 120 kg/hm 2 , opening fertilizer 120 kg/hm 2 , 12 th lunar month fertilizer 76.23 kg/hm 2 , total nitrogen application amount 316.23 kg/hm 2 . The proportions of living rape fertilizer, opening fertilizer and 12 th lunar month fertilizer were 37.95% , 37.95% and 24.11% , respectively. [Conclusion] The paper provided theoretical basis for high yield cultivation of high grade hybridized rapeseed.
基金Supported by Natural Science Foundation of Ningxia Hui Antonomous Region(NZ0603)Natural Science Foundation of Ningxia University(NS0506)~~
文摘[Objective] The aim of this study is to investigate the optimum application amount of nitrogen in Lycium barbarum based on considering the relationship between main secondary metabolites and polysaccharide.[Method]Under field conditions,the effects of different application amounts of nitrogen on main secondary metabolites of betaine,carotenoid and flavone of Lycium barbarum and the relationship between main secondary metabolites and polysaccharide.[Result] The main secondary metabolites of betaine,carotenoid and flavone of Lycium barbarum varied under different application amounts of nitrogen.The proper application amount of nitrogen(600-900 kg/hm2)was beneficial to the formation and accumulation of secondary metabolites such as carotenoids.Correlation analysis results showed that polysaccharide were negatively correlated with betaine,carotenoid and flavone at significant probability level.[Conclusion]Considering the relationship between the output and quality of the fruits of Lycium barbarum,the optimum nitrogen application amount should be 600-900 kg/hm2.
基金Funds for Transformation of Scientific and Technological Achievements of Ministry of Science and Technology of China (04EFN215200268)the Nomarch Special Foundation for the Excellent Science and Technology Talents of Guizhou Province[(2005(77)]the Science and Technology Program of Guizhou Province[(2006)6001]~~
文摘[ Objective] The aim of the research was to provide reference for reasonable application of nitrogen fertilizer for high yield.cultivation of hybrid rape cuhivar Youyan 9 and Youyan 10. [ Method] The net increment changes of individual plant fresh weight and dry matter weight of Youyan 9 and Youyan 10 with different nitrogen application treatments were studied. [ Result] The differences among average fresh weight increments of individual plant and average dry matter weight increment of individual plant with different treatments reached 0. 01 extremely significant level. Fresh weight increment and dry matter weight net increment of individual plant declined gradually with the increase of nitrogen application. In growtheourse ,fresh weight net increment of individual plant increased firstly then decreased and the maximum was in beginning flowering stage, besides that dry matter net increment increased gradually and the maximum was in mature period. The correlations among fresh net increment, dry matter weight net increment and yield net increment were positive or extremely positive. [ Conclusion] Under experimental condition, when nitrogen application was 225 kg/hm^2, hybrid rape Yanyou 9 and Yanyou 10 with low erucic,low glucosinolate could obtain high yield.
文摘This study aimed to investigate the effects of reducing application amount of base fertilizer and increasing application time of leaf fertilizer on corn yield so as to find out the most economical fertilization way for corn. On the basis of protecting environment, the economic benefits will be also increased. The results showed that the corn yield was increased with the increase of application amount of base fertilizer, and was also increased with the increase of application time of leaf fertilizer.For each time of spaying of leaf fertilizer, the corn yield was increased 258-592.5kg/hm^2 with increase amplitude ranging from 2.3%-5.6%.
基金supported by the National Natural Science Foundation of China(Grant No.32160172)the Key Science-Technology Project of Inner Mongolia(2023KYPT0010)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2025QN03006)the 2023 Inner Mongolia Public Institution High-Level Talent Introduction Scientific Research Support Project.
文摘Environmental DNA(eDNA)technology has revolutionized biodiversity monitoring with its non-invasive,sensitive,and cost-efficient approach.This paper systematically reviews eDNA advancements,examining its applications in aquatic and terrestrial ecosystems and assessing China’s standardization progress.It delineates four developmental phases from single-species detection to high-throughput sequencing,and highlights China’s contribution to the development of technical standards.While significant progress has been made,challenges persist in quantitative accuracy,methodological consistency,and large-scale implementation.Future efforts should prioritize enhanced standardization,improved quantification techniques,broader applications,and international collaboration to drive innovation in eDNA technology.
文摘Standards are the common language that consolidates global consensus and builds the most solid foundation for international partnerships.They are the cornerstone for global sustainable and high-quality development.Young students,with their active and vibrant minds,represent the future and hope of standardization.
基金funded by the Chronic Disease Management Research Project of National Health Commission Capacity Building and Continuing Education Center 2025(GWJJMB202510024146)the Post-Subsidy Project for Standard Development of Guizhou Provincial Market Supervision and Administration Bureau 2025(DB52/T1726-2023)the Guizhou Provincial Health Commission Science and Technology Fund Project(gzwkj2024-076,gzwkj2026-146).
文摘Diabetic retinopathy(DR)is a leading cause of vision loss among working-age populations,with early screening significantly reducing the risk of blindness.However,resource-limited regions often face challenges in DR screening due to a shortage of ophthalmologists.This study reports the implementation and outcomes of the Chinese local standard DB52/T 1726-2023,Regulations for the application of diabetic retinopathy screening artificial intelligence,in Cambodian healthcare institutions.A pilot DR screening program with independent operational capability is established by providing a non-mydriatic fundus camera and deploying a localized diabetic retinopathy artificial intelligence(DR-AI)screening platform at the Cambodia-Kingdom Friendship Hospital in Phnom Penh,along with comprehensive training.From January to August 2025,a total of 565 patients with type 2 diabetes were screened,yielding a DR detection rate of 26.0%(147 cases).Research findings demonstrate that applying mature Chinese DR-AI screening standards and technological solutions through international collaboration in regions with a scarcity of ophthalmic professionals is both feasible and effective.This project serves as a reference for promoting DR-AI in resource-constrained countries and regions,highlighting its significant potential to leverage AI in addressing the global burden of chronic diseases and advancing the modernization of health systems.
文摘Liver transplantation(LT)remains the optimal life-saving intervention for patients with end-stage liver disease.Despite the recent advances in LT several barriers,including organ allocation,donor-recipient matching,and patient education,persist.With the growing progress of artificial intelligence,particularly large language models(LLMs)like ChatGPT,new applications have emerged in the field of LT.Current studies demonstrating usage of ChatGPT in LT include various areas of application,from clinical settings to research and education.ChatGPT usage can benefit both healthcare professionals,by decreasing the time spent on non-clinical work,but also LT recipients by providing accurate information.Future potential applications include the expanding usage of ChatGPT and other LLMs in the field of LT pathology and radiology as well as the automated creation of discharge summaries or other related paperwork.Additionally,the next models of ChatGPT might have the potential to provide more accurate patient education material with increased readability.Although ChatGPT usage presents promising applications,there are certain ethical and practical limitations.Key concerns include patient data privacy,information accuracy,misinformation possibility and lack of legal framework.Healthcare providers and policymakers should collaborate for the establishment of a controlled framework for the safe use of ChatGPT.The aim of this minireview is to summarize current literature on ChatGPT in LT,highlighting both opportunities and limitations,while also providing future possible applications.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane”,CityU ref.:9231419“Research and application of antibacterial and healing-promoting smart nanofiber dressing for children’s burn wounds”,CityU ref:PJ9240111)+1 种基金the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).
文摘Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.
基金supported by the sub-project“Research and Application of In-Situ Value-Added Water-Soluble Fertilizer Application Technology”(Grant No.2023YFD1700204-3)under the 14th Five-Year National Key R&D Program Project“Development and Industrialization of Novel Green Value-Added Fertilizers”.
文摘Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistance to salt stress.In this study,we used corn steep liquor(CSL),myo-inositol(MI),and their combination to improve salt tolerance in Chinese cabbage(Brassica rapa L.ssp.pekinensis)under salt stress conditions.All three treatments significantly increased plant biomass and nutrient uptake,and improved soil physicochemical properties,while alleviating oxidative damage and ion toxicity.
文摘The integration of Artificial Intelligence(AI)and Machine Learning(ML)into groundwater exploration and water resources management has emerged as a transformative approach to addressing global water challenges.This review explores key AI and ML concepts,methodologies,and their applications in hydrology,focusing on groundwater potential mapping,water quality prediction,and groundwater level forecasting.It discusses various data acquisition techniques,including remote sensing,geospatial analysis,and geophysical surveys,alongside preprocessing methods that are essential for enhancing model accuracy.The study highlights AI-driven solutions in water distribution,allocation optimization,and realtime resource management.Despite their advantages,the application of AI and ML in water sciences faces several challenges,including data scarcity,model reliability,and the integration of these tools with traditional water management systems.Ethical and regulatory concerns also demand careful consideration.The paper also outlines future research directions,emphasizing the need for improved data collection,interpretable models,real-time monitoring capabilities,and interdisciplinary collaboration.By leveraging AI and ML advancements,the water sector can enhance decision-making,optimize resource distribution,and support the development of sustainable water management strategies.
文摘Effects of different levels of compost application on the amounts and percentage distribution of organic N forms in whole soils and particle size fractions were investigated. Soil samples were collected from three plots: (a) F, only chemical fertilizers;(b) F+LC, chemical fertilizers plus low level of compost;(c) F+HC, chemical fertilizers plus high level of compost. Each soil sample was divided into five fractions: coarse sand-sized aggregate (CSA), medium sand-sized aggregate (MSA), fine sand-sized aggregate (FSA), silt-sized aggregate (SIA) and clay-sized aggregate (CLA) fractions. The sand fractions were subdivided into decayed plants (DP) and mineral particles (MP). The amounts of total N and different organic N forms in the whole soils as well as size fractions generally increased with increasing the amount of compost. In the whole soils, percentage distribution of non-hydrolysable-N and amino sugar-N increased by compost application while the distribution values of the hydrolysable ammonium- N and unidentified-N decreased. The application did not affect the distribution degree of amino acid-N. In the size fractions, the distribution values of most organic N forms increased in the CSA-DP, MSA-DP and FSA-DP fractions by compost application. In the CLA fractions, the amounts and percentage distribution of organic N forms were the highest, although the application caused decreases in their distribution values. These findings indicate that the CLA fraction merit close attention as an important reservoir of various organic N.
文摘A new highly sensitive spectrophotometric method has been developed for the determination of micro amounts of bismuth (Ⅲ), based on the formation of Bi (Ⅲ)—meso—tetrakis—(4—N—trimethylammonium phenyl) porphine [T (4TMAP) P] complex. In the presence of Cd (Ⅱ), Bi(Ⅲ) reacts almost instantaneously with T (4TMAP)P in a 0. 6 mol/l NaAc—HAC buffer (PH5.8) at room temperature. The composition of the complex is T(4TMAP)P: Bi=1:1. The absorbance complex obeys Beer's law over the Bi(Ⅲ) concentration range 0.1—1.4 μg/ml. The linear relative coefficient γ is 0.9998. The apparent molar absorptivity was 1.75×10~5 1. mol^(-1). cm^(-1) at 463nm. The relative standard deviation of the method is 1.50% for Bi(Ⅲ) 7ug/10ml (10 determinations). The interference of foreign ions has been examined. This simple and rapid method can be applied to the assay of Bi(Ⅲ) in some tablets directly.
文摘α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organic compounds with diverse structures.Herein,the advances in the research areas ofα-trifluoromethyl ketone synthesis and their defluorination reactions are reviewed.Discussion on the mechanisms of the typical reactions has also been provided,in hope of affording some guides to the chemistry ofα-trifluoromethyl ketones in the synthetic methods toward themselves and their derivatives.
基金supported by the National Key R&D Program of China(2021YFF1200602)the National Science Fund for Excellent Overseas Scholars(0401260011)+3 种基金the National Defense Science and Technology Innovation Fund of Chinese Academy of Sciences(c02022088)the Tianjin Science and Technology Program(20JCZDJC00810)the National Natural Science Foundation of China(82202798)the Shanghai Sailing Program(22YF1404200).
文摘Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
文摘Grape crops are a great source of income for farmers.The yield and quality of grapes can be improved by preventing and treating diseases.The farmer’s yield will be dramatically impacted if diseases are found on grape leaves.Automatic detection can reduce the chances of leaf diseases affecting other healthy plants.Several studies have been conducted to detect grape leaf diseases,but most fail to engage with end users and integrate the model with real-time mobile applications.This study developed a mobile-based grape leaf disease detection(GLDD)application to identify infected leaves,Grape Guard,based on a TensorFlow Lite(TFLite)model generated from the You Only Look Once(YOLO)v8 model.A public grape leaf disease dataset containing four classes was used to train the model.The results of this study were relied on the YOLO architecture,specifically YOLOv5 and YOLOv8.After extensive experiments with different image sizes,YOLOv8 performed better than YOLOv5.YOLOv8 achieved 99.9%precision,100%recall,99.5%mean average precision(mAP),and 88%mAP50-95 for all classes to detect grape leaf diseases.The Grape Guard android mobile application can accurately detect the grape leaf disease by capturing images from grape vines.