Environmental DNA(eDNA)technology has revolutionized biodiversity monitoring with its non-invasive,sensitive,and cost-efficient approach.This paper systematically reviews eDNA advancements,examining its applications i...Environmental DNA(eDNA)technology has revolutionized biodiversity monitoring with its non-invasive,sensitive,and cost-efficient approach.This paper systematically reviews eDNA advancements,examining its applications in aquatic and terrestrial ecosystems and assessing China’s standardization progress.It delineates four developmental phases from single-species detection to high-throughput sequencing,and highlights China’s contribution to the development of technical standards.While significant progress has been made,challenges persist in quantitative accuracy,methodological consistency,and large-scale implementation.Future efforts should prioritize enhanced standardization,improved quantification techniques,broader applications,and international collaboration to drive innovation in eDNA technology.展开更多
Liver transplantation(LT)remains the optimal life-saving intervention for patients with end-stage liver disease.Despite the recent advances in LT several barriers,including organ allocation,donor-recipient matching,an...Liver transplantation(LT)remains the optimal life-saving intervention for patients with end-stage liver disease.Despite the recent advances in LT several barriers,including organ allocation,donor-recipient matching,and patient education,persist.With the growing progress of artificial intelligence,particularly large language models(LLMs)like ChatGPT,new applications have emerged in the field of LT.Current studies demonstrating usage of ChatGPT in LT include various areas of application,from clinical settings to research and education.ChatGPT usage can benefit both healthcare professionals,by decreasing the time spent on non-clinical work,but also LT recipients by providing accurate information.Future potential applications include the expanding usage of ChatGPT and other LLMs in the field of LT pathology and radiology as well as the automated creation of discharge summaries or other related paperwork.Additionally,the next models of ChatGPT might have the potential to provide more accurate patient education material with increased readability.Although ChatGPT usage presents promising applications,there are certain ethical and practical limitations.Key concerns include patient data privacy,information accuracy,misinformation possibility and lack of legal framework.Healthcare providers and policymakers should collaborate for the establishment of a controlled framework for the safe use of ChatGPT.The aim of this minireview is to summarize current literature on ChatGPT in LT,highlighting both opportunities and limitations,while also providing future possible applications.展开更多
Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for...Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
Diabetic retinopathy(DR)is a leading cause of vision loss among working-age populations,with early screening significantly reducing the risk of blindness.However,resource-limited regions often face challenges in DR sc...Diabetic retinopathy(DR)is a leading cause of vision loss among working-age populations,with early screening significantly reducing the risk of blindness.However,resource-limited regions often face challenges in DR screening due to a shortage of ophthalmologists.This study reports the implementation and outcomes of the Chinese local standard DB52/T 1726-2023,Regulations for the application of diabetic retinopathy screening artificial intelligence,in Cambodian healthcare institutions.A pilot DR screening program with independent operational capability is established by providing a non-mydriatic fundus camera and deploying a localized diabetic retinopathy artificial intelligence(DR-AI)screening platform at the Cambodia-Kingdom Friendship Hospital in Phnom Penh,along with comprehensive training.From January to August 2025,a total of 565 patients with type 2 diabetes were screened,yielding a DR detection rate of 26.0%(147 cases).Research findings demonstrate that applying mature Chinese DR-AI screening standards and technological solutions through international collaboration in regions with a scarcity of ophthalmic professionals is both feasible and effective.This project serves as a reference for promoting DR-AI in resource-constrained countries and regions,highlighting its significant potential to leverage AI in addressing the global burden of chronic diseases and advancing the modernization of health systems.展开更多
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays...As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.展开更多
The integration of Artificial Intelligence(AI)and Machine Learning(ML)into groundwater exploration and water resources management has emerged as a transformative approach to addressing global water challenges.This rev...The integration of Artificial Intelligence(AI)and Machine Learning(ML)into groundwater exploration and water resources management has emerged as a transformative approach to addressing global water challenges.This review explores key AI and ML concepts,methodologies,and their applications in hydrology,focusing on groundwater potential mapping,water quality prediction,and groundwater level forecasting.It discusses various data acquisition techniques,including remote sensing,geospatial analysis,and geophysical surveys,alongside preprocessing methods that are essential for enhancing model accuracy.The study highlights AI-driven solutions in water distribution,allocation optimization,and realtime resource management.Despite their advantages,the application of AI and ML in water sciences faces several challenges,including data scarcity,model reliability,and the integration of these tools with traditional water management systems.Ethical and regulatory concerns also demand careful consideration.The paper also outlines future research directions,emphasizing the need for improved data collection,interpretable models,real-time monitoring capabilities,and interdisciplinary collaboration.By leveraging AI and ML advancements,the water sector can enhance decision-making,optimize resource distribution,and support the development of sustainable water management strategies.展开更多
Standards are the common language that consolidates global consensus and builds the most solid foundation for international partnerships.They are the cornerstone for global sustainable and high-quality development.You...Standards are the common language that consolidates global consensus and builds the most solid foundation for international partnerships.They are the cornerstone for global sustainable and high-quality development.Young students,with their active and vibrant minds,represent the future and hope of standardization.展开更多
Background:Epilepsy is the most common neurological disease in the world.The objective of the study was to determine the knowledge,attitude and practice of driver's license applicants and instructors in driving sc...Background:Epilepsy is the most common neurological disease in the world.The objective of the study was to determine the knowledge,attitude and practice of driver's license applicants and instructors in driving schools on epilepsy in Burkina Faso.Method:This cross-sectional study was carried out from January 7th to March 7th 2020 in 21 driving schools approved by the National Driver License Authority in the city of Ouagadougou.Fifteen driver applicants and one instructor were selected in each driving school,resulting in a total of 315 driver applicants and 21 instructors in the study.Results:The mean age of participants was 29.91±7.63 years.One of the driver applicants included in the study was once experienced a seizure attack.All respondents had heard of epilepsy.The main source of epilepsy information was from family(42.5%).Two hundred and twenty-six respondents(673%)had witnessed an epileptic seizure.A majority of participants(55.9%)believed that persons with epilepsy be not permitted to drive a motor vehicle.About 44.0% of participants thought that people with epilepsy should be permitted to drive under certain conditions.One hundred and four(30.9%)participants suggested that people with epilepsy be permitted to drive a light vehicle.One hundred and forty-one(42.0%)suggest to withdraw the driving license for lifetime if a driver had an epileptic seizure attack;while twenty-three(6.8%)participants recommended suspension of driver license for 12 months.Conclusion:Efforts should be made to improve awareness and education among license applicants and instructors on the driving by people with epilepsy.展开更多
The interleukin-17 family is the key group of cytokines and displays a broad spectrum of biological functions,including regulating the inflammatory cascade in various autoimmune and inflammatory diseases,such as multi...The interleukin-17 family is the key group of cytokines and displays a broad spectrum of biological functions,including regulating the inflammatory cascade in various autoimmune and inflammatory diseases,such as multiple sclerosis,neuromyelitis optica spectrum disorder,myasthenia gravis,Guillain–Barre syndrome,acute disseminated encephalomyelitis,diabetes,inflammatory skin diseases,joint inflammation,and cancer.Although the function of the interleukin-17 family has attracted increasing research attention over many years,the expression,function,and regulation mechanisms of different interleukin-17 members are complicated and still only partially understood.Currently,the interleukin-17A pathway is considered a critical therapeutic target for numerous immune and chronic inflammatory diseases,with several monoclonal antibodies against interleukin-17A having been successfully used in clinical practice.Whether other interleukin-17 members have the potential to be targeted in other diseases is still debated.This review first summarizes the recent advancements in understanding the physicochemical properties,physiological functions,cellular origins,and downstream signaling pathways of different members and corresponding receptors of the interleukin-17 family.Subsequently,the function of interleukin-17 in various immune diseases is discussed,and the important role of interleukin-17 in the pathological process of immune diseases is demonstrated from multiple perspectives.Then,the current status of targeted interleukin-17 therapy is summarized,and the effectiveness and safety of targeted interleukin-17 therapy are analyzed.Finally,the clinical application prospects of targeting the interleukin-17 pathway are discussed.展开更多
Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistan...Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistance to salt stress.In this study,we used corn steep liquor(CSL),myo-inositol(MI),and their combination to improve salt tolerance in Chinese cabbage(Brassica rapa L.ssp.pekinensis)under salt stress conditions.All three treatments significantly increased plant biomass and nutrient uptake,and improved soil physicochemical properties,while alleviating oxidative damage and ion toxicity.展开更多
α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organi...α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organic compounds with diverse structures.Herein,the advances in the research areas ofα-trifluoromethyl ketone synthesis and their defluorination reactions are reviewed.Discussion on the mechanisms of the typical reactions has also been provided,in hope of affording some guides to the chemistry ofα-trifluoromethyl ketones in the synthetic methods toward themselves and their derivatives.展开更多
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC...Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.展开更多
Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIB...Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIBs,which are foldable and have high energy densities,are be-coming increasingly important as power sources for wear-able devices,flexible electronics,and mobile energy applica-tions.Carbon materials,especially carbon nanofibers,are pivotal in improving the performance of FLIBs by increas-ing electrical conductivity,chemical stability,and surface area,as well as reducing costs.These materials also play a significant role in establishing conducting networks and im-proving structural integrity,which are essential for extend-ing the cycle life and enhancing the safety of the batteries.This review considers the role of electrospinning in the fabrication of critical FLIB components,with a particular emphasis on the integration of carbon materials.It explores strategies to optimize FLIB performance by fine-tuning the electrospinning para-meters,such as electric field strength,spinning rate,solution concentration,and carbonization process.Precise control over fiber properties is crucial for enhancing battery reliability and stability during folding and bending.It also highlights the latest research findings in carbon-based electrode materials,high-performance electrolytes,and separator structures,discussing the practical challenges and opportunities these materials present.It underscores the significant impact of carbon materials on the evolution of FLIBs and their potential to shape future energy storage technologies.展开更多
Carbon nanotubes(CNTs)have many excellent properties that make them ideally suited for use in lithium-ion batteries(LIBs).In this review,the recent research on applications of CNTs in LIBs,including their usage as fre...Carbon nanotubes(CNTs)have many excellent properties that make them ideally suited for use in lithium-ion batteries(LIBs).In this review,the recent research on applications of CNTs in LIBs,including their usage as freestanding anodes,conductive additives,and current collectors,are discussed.Challenges,strategies,and progress are analyzed by selecting typical examples.Particularly,when CNTs are used with relatively large mass fractions,the relevant interfacial electrochemistry in such a CNT-based electrode,which dictates the quality of the resulting solid-electrolyte interface,becomes a concern.Hence,in this review the different lithium-ion adsorption and insertion mechanisms inside and outside of CNTs are compared;the influence of not only CNT structural features(including their length,defect density,diameter,and wall thickness)but also the electrolyte composition on the solid-electrolyte interfacial reactions is analyzed in detail.Strategies to optimize the solid-solid interface between CNTs and the other solid components in various composite electrodes are also covered.By emphasizing the importance of such a structure-performance relationship,the merits and weaknesses of various applications of CNTs in various advanced LIBs are clarified.展开更多
Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditi...Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents ca...Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method.展开更多
Grape crops are a great source of income for farmers.The yield and quality of grapes can be improved by preventing and treating diseases.The farmer’s yield will be dramatically impacted if diseases are found on grape...Grape crops are a great source of income for farmers.The yield and quality of grapes can be improved by preventing and treating diseases.The farmer’s yield will be dramatically impacted if diseases are found on grape leaves.Automatic detection can reduce the chances of leaf diseases affecting other healthy plants.Several studies have been conducted to detect grape leaf diseases,but most fail to engage with end users and integrate the model with real-time mobile applications.This study developed a mobile-based grape leaf disease detection(GLDD)application to identify infected leaves,Grape Guard,based on a TensorFlow Lite(TFLite)model generated from the You Only Look Once(YOLO)v8 model.A public grape leaf disease dataset containing four classes was used to train the model.The results of this study were relied on the YOLO architecture,specifically YOLOv5 and YOLOv8.After extensive experiments with different image sizes,YOLOv8 performed better than YOLOv5.YOLOv8 achieved 99.9%precision,100%recall,99.5%mean average precision(mAP),and 88%mAP50-95 for all classes to detect grape leaf diseases.The Grape Guard android mobile application can accurately detect the grape leaf disease by capturing images from grape vines.展开更多
Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,whic...Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,which is characterized by less adverse reaction and convenient operation.It has been widely used in the treatment of various diseases.This review introduces six major clinical applications of TEAS,named analgesia,regulation of gastrointestinal function,improvement of reproductive function,enhancement of cognitive function,promotion of limb function recovery and relief of fatigue.Besides,TEAS has been ap-plied to the treatment of other chronic diseases such as hypertension and diabetes,achieving satisfactory clinical effects.However,two crucial challenges are encountered in the development of TEAS.One is the lack of standardization in the selection of parameters such as waveform,frequency,intensity and stimula-tion duration.The other is the limitation on the flexibility in the acupoint selection.This review analyzes key issues that need to be addressed in the current clinical application of TEAS,such as the selection of parameters and acupoints,and this review provides a certain reference value for optimizing regimens of TEAS and promoting its development and application.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.32160172)the Key Science-Technology Project of Inner Mongolia(2023KYPT0010)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2025QN03006)the 2023 Inner Mongolia Public Institution High-Level Talent Introduction Scientific Research Support Project.
文摘Environmental DNA(eDNA)technology has revolutionized biodiversity monitoring with its non-invasive,sensitive,and cost-efficient approach.This paper systematically reviews eDNA advancements,examining its applications in aquatic and terrestrial ecosystems and assessing China’s standardization progress.It delineates four developmental phases from single-species detection to high-throughput sequencing,and highlights China’s contribution to the development of technical standards.While significant progress has been made,challenges persist in quantitative accuracy,methodological consistency,and large-scale implementation.Future efforts should prioritize enhanced standardization,improved quantification techniques,broader applications,and international collaboration to drive innovation in eDNA technology.
文摘Liver transplantation(LT)remains the optimal life-saving intervention for patients with end-stage liver disease.Despite the recent advances in LT several barriers,including organ allocation,donor-recipient matching,and patient education,persist.With the growing progress of artificial intelligence,particularly large language models(LLMs)like ChatGPT,new applications have emerged in the field of LT.Current studies demonstrating usage of ChatGPT in LT include various areas of application,from clinical settings to research and education.ChatGPT usage can benefit both healthcare professionals,by decreasing the time spent on non-clinical work,but also LT recipients by providing accurate information.Future potential applications include the expanding usage of ChatGPT and other LLMs in the field of LT pathology and radiology as well as the automated creation of discharge summaries or other related paperwork.Additionally,the next models of ChatGPT might have the potential to provide more accurate patient education material with increased readability.Although ChatGPT usage presents promising applications,there are certain ethical and practical limitations.Key concerns include patient data privacy,information accuracy,misinformation possibility and lack of legal framework.Healthcare providers and policymakers should collaborate for the establishment of a controlled framework for the safe use of ChatGPT.The aim of this minireview is to summarize current literature on ChatGPT in LT,highlighting both opportunities and limitations,while also providing future possible applications.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane”,CityU ref.:9231419“Research and application of antibacterial and healing-promoting smart nanofiber dressing for children’s burn wounds”,CityU ref:PJ9240111)+1 种基金the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).
文摘Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
基金funded by the Chronic Disease Management Research Project of National Health Commission Capacity Building and Continuing Education Center 2025(GWJJMB202510024146)the Post-Subsidy Project for Standard Development of Guizhou Provincial Market Supervision and Administration Bureau 2025(DB52/T1726-2023)the Guizhou Provincial Health Commission Science and Technology Fund Project(gzwkj2024-076,gzwkj2026-146).
文摘Diabetic retinopathy(DR)is a leading cause of vision loss among working-age populations,with early screening significantly reducing the risk of blindness.However,resource-limited regions often face challenges in DR screening due to a shortage of ophthalmologists.This study reports the implementation and outcomes of the Chinese local standard DB52/T 1726-2023,Regulations for the application of diabetic retinopathy screening artificial intelligence,in Cambodian healthcare institutions.A pilot DR screening program with independent operational capability is established by providing a non-mydriatic fundus camera and deploying a localized diabetic retinopathy artificial intelligence(DR-AI)screening platform at the Cambodia-Kingdom Friendship Hospital in Phnom Penh,along with comprehensive training.From January to August 2025,a total of 565 patients with type 2 diabetes were screened,yielding a DR detection rate of 26.0%(147 cases).Research findings demonstrate that applying mature Chinese DR-AI screening standards and technological solutions through international collaboration in regions with a scarcity of ophthalmic professionals is both feasible and effective.This project serves as a reference for promoting DR-AI in resource-constrained countries and regions,highlighting its significant potential to leverage AI in addressing the global burden of chronic diseases and advancing the modernization of health systems.
基金supported by Youth Talent Project of Scientific Research Program of Hubei Provincial Department of Education under Grant Q20241809Doctoral Scientific Research Foundation of Hubei University of Automotive Technology under Grant 202404.
文摘As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.
文摘The integration of Artificial Intelligence(AI)and Machine Learning(ML)into groundwater exploration and water resources management has emerged as a transformative approach to addressing global water challenges.This review explores key AI and ML concepts,methodologies,and their applications in hydrology,focusing on groundwater potential mapping,water quality prediction,and groundwater level forecasting.It discusses various data acquisition techniques,including remote sensing,geospatial analysis,and geophysical surveys,alongside preprocessing methods that are essential for enhancing model accuracy.The study highlights AI-driven solutions in water distribution,allocation optimization,and realtime resource management.Despite their advantages,the application of AI and ML in water sciences faces several challenges,including data scarcity,model reliability,and the integration of these tools with traditional water management systems.Ethical and regulatory concerns also demand careful consideration.The paper also outlines future research directions,emphasizing the need for improved data collection,interpretable models,real-time monitoring capabilities,and interdisciplinary collaboration.By leveraging AI and ML advancements,the water sector can enhance decision-making,optimize resource distribution,and support the development of sustainable water management strategies.
文摘Standards are the common language that consolidates global consensus and builds the most solid foundation for international partnerships.They are the cornerstone for global sustainable and high-quality development.Young students,with their active and vibrant minds,represent the future and hope of standardization.
文摘Background:Epilepsy is the most common neurological disease in the world.The objective of the study was to determine the knowledge,attitude and practice of driver's license applicants and instructors in driving schools on epilepsy in Burkina Faso.Method:This cross-sectional study was carried out from January 7th to March 7th 2020 in 21 driving schools approved by the National Driver License Authority in the city of Ouagadougou.Fifteen driver applicants and one instructor were selected in each driving school,resulting in a total of 315 driver applicants and 21 instructors in the study.Results:The mean age of participants was 29.91±7.63 years.One of the driver applicants included in the study was once experienced a seizure attack.All respondents had heard of epilepsy.The main source of epilepsy information was from family(42.5%).Two hundred and twenty-six respondents(673%)had witnessed an epileptic seizure.A majority of participants(55.9%)believed that persons with epilepsy be not permitted to drive a motor vehicle.About 44.0% of participants thought that people with epilepsy should be permitted to drive under certain conditions.One hundred and four(30.9%)participants suggested that people with epilepsy be permitted to drive a light vehicle.One hundred and forty-one(42.0%)suggest to withdraw the driving license for lifetime if a driver had an epileptic seizure attack;while twenty-three(6.8%)participants recommended suspension of driver license for 12 months.Conclusion:Efforts should be made to improve awareness and education among license applicants and instructors on the driving by people with epilepsy.
基金supported by the National Natural Science Foundational of China(Key Program),No.U24A20692(to CJZ)the National Natural Science Foundational of China,Nos.82101414(to MLJ),82371355(to CJZ)+4 种基金the National Natural Science Foundational of China for Excellent Young Scholars,No.82022019(to CJZ)Sichuan Special Fund for Distinguished Young Scholars,No.24NSFJQ0052(to CJZ)The Innovation and Entrepreneurial Team of Sichuan Tianfu Emei Program,No.CZ2024018(to CJZ)Funding for Distinguished Young Scholars of Sichuan Provincial People’s Hospital,No.30420230005(to CJZ)Funding for Distinguished Young Scholars of University of Electronic Science and Technology of China,No.A1098531023601381(to CJZ)。
文摘The interleukin-17 family is the key group of cytokines and displays a broad spectrum of biological functions,including regulating the inflammatory cascade in various autoimmune and inflammatory diseases,such as multiple sclerosis,neuromyelitis optica spectrum disorder,myasthenia gravis,Guillain–Barre syndrome,acute disseminated encephalomyelitis,diabetes,inflammatory skin diseases,joint inflammation,and cancer.Although the function of the interleukin-17 family has attracted increasing research attention over many years,the expression,function,and regulation mechanisms of different interleukin-17 members are complicated and still only partially understood.Currently,the interleukin-17A pathway is considered a critical therapeutic target for numerous immune and chronic inflammatory diseases,with several monoclonal antibodies against interleukin-17A having been successfully used in clinical practice.Whether other interleukin-17 members have the potential to be targeted in other diseases is still debated.This review first summarizes the recent advancements in understanding the physicochemical properties,physiological functions,cellular origins,and downstream signaling pathways of different members and corresponding receptors of the interleukin-17 family.Subsequently,the function of interleukin-17 in various immune diseases is discussed,and the important role of interleukin-17 in the pathological process of immune diseases is demonstrated from multiple perspectives.Then,the current status of targeted interleukin-17 therapy is summarized,and the effectiveness and safety of targeted interleukin-17 therapy are analyzed.Finally,the clinical application prospects of targeting the interleukin-17 pathway are discussed.
基金supported by the sub-project“Research and Application of In-Situ Value-Added Water-Soluble Fertilizer Application Technology”(Grant No.2023YFD1700204-3)under the 14th Five-Year National Key R&D Program Project“Development and Industrialization of Novel Green Value-Added Fertilizers”.
文摘Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistance to salt stress.In this study,we used corn steep liquor(CSL),myo-inositol(MI),and their combination to improve salt tolerance in Chinese cabbage(Brassica rapa L.ssp.pekinensis)under salt stress conditions.All three treatments significantly increased plant biomass and nutrient uptake,and improved soil physicochemical properties,while alleviating oxidative damage and ion toxicity.
文摘α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organic compounds with diverse structures.Herein,the advances in the research areas ofα-trifluoromethyl ketone synthesis and their defluorination reactions are reviewed.Discussion on the mechanisms of the typical reactions has also been provided,in hope of affording some guides to the chemistry ofα-trifluoromethyl ketones in the synthetic methods toward themselves and their derivatives.
基金supported by the National Key R&D Program of China(2021YFF1200602)the National Science Fund for Excellent Overseas Scholars(0401260011)+3 种基金the National Defense Science and Technology Innovation Fund of Chinese Academy of Sciences(c02022088)the Tianjin Science and Technology Program(20JCZDJC00810)the National Natural Science Foundation of China(82202798)the Shanghai Sailing Program(22YF1404200).
文摘Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.
文摘Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIBs,which are foldable and have high energy densities,are be-coming increasingly important as power sources for wear-able devices,flexible electronics,and mobile energy applica-tions.Carbon materials,especially carbon nanofibers,are pivotal in improving the performance of FLIBs by increas-ing electrical conductivity,chemical stability,and surface area,as well as reducing costs.These materials also play a significant role in establishing conducting networks and im-proving structural integrity,which are essential for extend-ing the cycle life and enhancing the safety of the batteries.This review considers the role of electrospinning in the fabrication of critical FLIB components,with a particular emphasis on the integration of carbon materials.It explores strategies to optimize FLIB performance by fine-tuning the electrospinning para-meters,such as electric field strength,spinning rate,solution concentration,and carbonization process.Precise control over fiber properties is crucial for enhancing battery reliability and stability during folding and bending.It also highlights the latest research findings in carbon-based electrode materials,high-performance electrolytes,and separator structures,discussing the practical challenges and opportunities these materials present.It underscores the significant impact of carbon materials on the evolution of FLIBs and their potential to shape future energy storage technologies.
基金Xiamen Science and Technology Project,Grant/Award Number:3502Z20231057National Key Research and Development Program of China,Grant/Award Number:3502Z20231057National Natural Science Foundation of China,Grant/Award Numbers:22279107,22288102。
文摘Carbon nanotubes(CNTs)have many excellent properties that make them ideally suited for use in lithium-ion batteries(LIBs).In this review,the recent research on applications of CNTs in LIBs,including their usage as freestanding anodes,conductive additives,and current collectors,are discussed.Challenges,strategies,and progress are analyzed by selecting typical examples.Particularly,when CNTs are used with relatively large mass fractions,the relevant interfacial electrochemistry in such a CNT-based electrode,which dictates the quality of the resulting solid-electrolyte interface,becomes a concern.Hence,in this review the different lithium-ion adsorption and insertion mechanisms inside and outside of CNTs are compared;the influence of not only CNT structural features(including their length,defect density,diameter,and wall thickness)but also the electrolyte composition on the solid-electrolyte interfacial reactions is analyzed in detail.Strategies to optimize the solid-solid interface between CNTs and the other solid components in various composite electrodes are also covered.By emphasizing the importance of such a structure-performance relationship,the merits and weaknesses of various applications of CNTs in various advanced LIBs are clarified.
文摘Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
基金supported by Natural Science Foundation of Hunan Province(2021JJ31081,2024JJ5619)the Science Fund of State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle(No 32215004).
文摘Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method.
文摘Grape crops are a great source of income for farmers.The yield and quality of grapes can be improved by preventing and treating diseases.The farmer’s yield will be dramatically impacted if diseases are found on grape leaves.Automatic detection can reduce the chances of leaf diseases affecting other healthy plants.Several studies have been conducted to detect grape leaf diseases,but most fail to engage with end users and integrate the model with real-time mobile applications.This study developed a mobile-based grape leaf disease detection(GLDD)application to identify infected leaves,Grape Guard,based on a TensorFlow Lite(TFLite)model generated from the You Only Look Once(YOLO)v8 model.A public grape leaf disease dataset containing four classes was used to train the model.The results of this study were relied on the YOLO architecture,specifically YOLOv5 and YOLOv8.After extensive experiments with different image sizes,YOLOv8 performed better than YOLOv5.YOLOv8 achieved 99.9%precision,100%recall,99.5%mean average precision(mAP),and 88%mAP50-95 for all classes to detect grape leaf diseases.The Grape Guard android mobile application can accurately detect the grape leaf disease by capturing images from grape vines.
基金Supported by Shanghai 2020“Science and Technology Innovation Action Plan”Medical Innovation Research Special Program:20Y21902800Shanghai Municipal Health Commission Shanghai Three-Year Action Plan to Further Accelerate the Development of Traditional Chinese Medicine Inheritance and Innovation:ZY(2021-2023)−0302)+1 种基金Shanghai Key Specialty(Acupuncture)Construction Project:shslczdzk04701Shanghai 2024"Science and Technology Innovation Action Plan"star cultivation(Sail special):24YF2740600.
文摘Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,which is characterized by less adverse reaction and convenient operation.It has been widely used in the treatment of various diseases.This review introduces six major clinical applications of TEAS,named analgesia,regulation of gastrointestinal function,improvement of reproductive function,enhancement of cognitive function,promotion of limb function recovery and relief of fatigue.Besides,TEAS has been ap-plied to the treatment of other chronic diseases such as hypertension and diabetes,achieving satisfactory clinical effects.However,two crucial challenges are encountered in the development of TEAS.One is the lack of standardization in the selection of parameters such as waveform,frequency,intensity and stimula-tion duration.The other is the limitation on the flexibility in the acupoint selection.This review analyzes key issues that need to be addressed in the current clinical application of TEAS,such as the selection of parameters and acupoints,and this review provides a certain reference value for optimizing regimens of TEAS and promoting its development and application.