Air-driven boosters are widely used to obtain high-pressure gas. Through analysis of the boosting process of an air-driven booster, the basic mathematical model of working processes can be set up. By selecting the app...Air-driven boosters are widely used to obtain high-pressure gas. Through analysis of the boosting process of an air-driven booster, the basic mathematical model of working processes can be set up. By selecting the appropriate reference values, the basic mathematical model is transformed to a dimensionless expression. Using MATLAB/Simulink for simulation and studying the booster experimentally, the dimensionless outlet flow characteristics of the booster were obtained and the simulation results agree well with the experimental results. Through analysis, it can be seen that the dimensionless outlet flow of the booster is mainly determined by the dimensionless input pressure of the driving chamber, the dimensionless outlet condition pressure of the booster and the dimensionless area of the piston in the driving chamber. The dimensionless average outlet flow becomes larger with an increasing dimensionless input pressure of the driving chamber, but it becomes smaller with an increase in the dimen- sionless outlet condition pressure of the booster. Especially when the dimensionless outlet condition pressure is approximately 1.4, the dimensionless average outlet flow reaches zero. With an increase in the dimensionless area of the piston in the driving chamber, the dimensionless average outlet flow increases and peaks at approximately 1.89, and after this peak, it starts to decrease. This research can be referred to in the design of air-driven boosters.展开更多
目的比较无创通气间歇期氧气驱动雾化、无创通气间歇期空气驱动雾化、无创通气同时空气驱动雾化对慢性阻塞性肺疾病急性加重(AECOPD)患者雾化过程中二氧化碳分压、氧饱和度(SpO_(2))及心率的动态变化及治疗效果的影响。方法根据随机对...目的比较无创通气间歇期氧气驱动雾化、无创通气间歇期空气驱动雾化、无创通气同时空气驱动雾化对慢性阻塞性肺疾病急性加重(AECOPD)患者雾化过程中二氧化碳分压、氧饱和度(SpO_(2))及心率的动态变化及治疗效果的影响。方法根据随机对照研究的方法将99例需使用无创通气及雾化吸入治疗的慢性阻塞性肺疾病急性加重患者根据计算机产生的随机数字表随机分为对照组、观察一组、观察二组各33例,对照组给予无创通气间歇期氧气驱动雾化吸入,观察一组给予无创通气间歇空气驱动雾化,观察二组给予无创通气同时空气驱动雾化,记录雾化0、5、10、15 min和雾化结束5、10、15 min的经皮二氧化碳分压(PtCO_(2))、SpO_(2)及心率变化。记录治疗前至治疗第7天每天早晨动脉血气PaCO_(2)、PaO_(2)数值,记录三组住院时间。结果三组雾化过程中PtCO_(2)对比结果显示,时间主效应和时间组别交互效应差异均有统计学意义(P<0.001),且对照组PtCO_(2)数值与时间呈线性关系(F=10.166,P=0.003),随时间变化呈上升状态;观察一组各时间点PtCO_(2)数值与时间呈线性关系(F=10.544,P=0.003),随时间变化呈下降状态;观察二组各时间点PtCO_(2)数值与时间呈线性关系(F=20.003,P<0.001),随时间呈下降状态。再分别对三组每个时间点PtCO_(2)数值进行多样本方差分析,对照组雾化15 min PtCO_(2)高于观察一组、观察二组;观察一组、观察二组均与对照组雾化前后PtCO_(2)差值(dPtCO_(2))差异有统计学意义(P<0.05);对三组雾化结束观察期每个时间点PtCO_(2)数值进行多样本方差分析,结果显示三组雾化结束0 min PtCO_(2)、雾化结束5 min PtCO_(2)差异有统计学意义(P<0.05),雾化结束10 min PtCO_(2)、雾化结束15 min PtCO_(2)三组差异无统计学意义(P>0.05);三组雾化过程中SpO_(2)对比显示三组时间组别交互效应差异均有统计学意义(P<0.05)。且观察一组各时间点SpO_(2)数值随时间呈下降趋势。对照组雾化10 min SpO_(2)、雾化15 min SpO_(2)高于观察一组和观察二组;三组均能使动脉血气中PaCO_(2)随治疗时间的增加而好转(P<0.05)。结论三种雾化治疗方式均能取得良好的治疗效果,但无创通气间歇期氧气驱动雾化会使雾化过程中PtCO_(2)及SpO_(2)上升;无创通气间歇期空气驱动雾化会使雾化过程中PtCO_(2)及SpO_(2)下降;无创通气同时空气驱动雾化使雾化过程中PtCO_(2)下降及保持SpO_(2)平稳,因此无创通气同时空气驱动雾化是相对更加安全的雾化吸入方式,值得临床推广。展开更多
文摘Air-driven boosters are widely used to obtain high-pressure gas. Through analysis of the boosting process of an air-driven booster, the basic mathematical model of working processes can be set up. By selecting the appropriate reference values, the basic mathematical model is transformed to a dimensionless expression. Using MATLAB/Simulink for simulation and studying the booster experimentally, the dimensionless outlet flow characteristics of the booster were obtained and the simulation results agree well with the experimental results. Through analysis, it can be seen that the dimensionless outlet flow of the booster is mainly determined by the dimensionless input pressure of the driving chamber, the dimensionless outlet condition pressure of the booster and the dimensionless area of the piston in the driving chamber. The dimensionless average outlet flow becomes larger with an increasing dimensionless input pressure of the driving chamber, but it becomes smaller with an increase in the dimen- sionless outlet condition pressure of the booster. Especially when the dimensionless outlet condition pressure is approximately 1.4, the dimensionless average outlet flow reaches zero. With an increase in the dimensionless area of the piston in the driving chamber, the dimensionless average outlet flow increases and peaks at approximately 1.89, and after this peak, it starts to decrease. This research can be referred to in the design of air-driven boosters.
文摘目的比较无创通气间歇期氧气驱动雾化、无创通气间歇期空气驱动雾化、无创通气同时空气驱动雾化对慢性阻塞性肺疾病急性加重(AECOPD)患者雾化过程中二氧化碳分压、氧饱和度(SpO_(2))及心率的动态变化及治疗效果的影响。方法根据随机对照研究的方法将99例需使用无创通气及雾化吸入治疗的慢性阻塞性肺疾病急性加重患者根据计算机产生的随机数字表随机分为对照组、观察一组、观察二组各33例,对照组给予无创通气间歇期氧气驱动雾化吸入,观察一组给予无创通气间歇空气驱动雾化,观察二组给予无创通气同时空气驱动雾化,记录雾化0、5、10、15 min和雾化结束5、10、15 min的经皮二氧化碳分压(PtCO_(2))、SpO_(2)及心率变化。记录治疗前至治疗第7天每天早晨动脉血气PaCO_(2)、PaO_(2)数值,记录三组住院时间。结果三组雾化过程中PtCO_(2)对比结果显示,时间主效应和时间组别交互效应差异均有统计学意义(P<0.001),且对照组PtCO_(2)数值与时间呈线性关系(F=10.166,P=0.003),随时间变化呈上升状态;观察一组各时间点PtCO_(2)数值与时间呈线性关系(F=10.544,P=0.003),随时间变化呈下降状态;观察二组各时间点PtCO_(2)数值与时间呈线性关系(F=20.003,P<0.001),随时间呈下降状态。再分别对三组每个时间点PtCO_(2)数值进行多样本方差分析,对照组雾化15 min PtCO_(2)高于观察一组、观察二组;观察一组、观察二组均与对照组雾化前后PtCO_(2)差值(dPtCO_(2))差异有统计学意义(P<0.05);对三组雾化结束观察期每个时间点PtCO_(2)数值进行多样本方差分析,结果显示三组雾化结束0 min PtCO_(2)、雾化结束5 min PtCO_(2)差异有统计学意义(P<0.05),雾化结束10 min PtCO_(2)、雾化结束15 min PtCO_(2)三组差异无统计学意义(P>0.05);三组雾化过程中SpO_(2)对比显示三组时间组别交互效应差异均有统计学意义(P<0.05)。且观察一组各时间点SpO_(2)数值随时间呈下降趋势。对照组雾化10 min SpO_(2)、雾化15 min SpO_(2)高于观察一组和观察二组;三组均能使动脉血气中PaCO_(2)随治疗时间的增加而好转(P<0.05)。结论三种雾化治疗方式均能取得良好的治疗效果,但无创通气间歇期氧气驱动雾化会使雾化过程中PtCO_(2)及SpO_(2)上升;无创通气间歇期空气驱动雾化会使雾化过程中PtCO_(2)及SpO_(2)下降;无创通气同时空气驱动雾化使雾化过程中PtCO_(2)下降及保持SpO_(2)平稳,因此无创通气同时空气驱动雾化是相对更加安全的雾化吸入方式,值得临床推广。