期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
基于HO-BP-AdaBoost的大坝变形监控模型
1
作者 代硕 苏怀智 +1 位作者 谷宇 郭莹莹 《水电能源科学》 北大核心 2025年第7期153-156,108,共5页
建立高精度的大坝变形监控模型对于分析大坝变形监测资料,保障大坝运行安全具有重要意义,但传统的反向传播神经网络(BP)在搜索过程中容易陷入局部最优,因此将具有较好全局搜索能力的河马优化算法(HO)引入反向传播神经网络,并基于自适应... 建立高精度的大坝变形监控模型对于分析大坝变形监测资料,保障大坝运行安全具有重要意义,但传统的反向传播神经网络(BP)在搜索过程中容易陷入局部最优,因此将具有较好全局搜索能力的河马优化算法(HO)引入反向传播神经网络,并基于自适应增强算法(AdaBoost),构建了HO-BP-AdaBoost大坝变形监控模型。首先,利用HO算法对BP神经网络的初始权值和阈值进行优化,并将优化后的权值和阈值赋予BP神经网络,构建HO-BP弱预测器;然后通过训练迭代多个弱预测器,并根据预测误差分配不同的权重,组合成为强预测器;最后,以某混凝土坝为例,通过选取决定系数、均方根误差、均方误差及平均绝对误差作为评价指标,比较该模型与其他模型的输出结果。结果表明,HO-BP-AdaBoost模型对于大坝变形具有较高的预测精度。 展开更多
关键词 大坝变形预测 监控模型 反向传播神经网络 自适应增强算法 河马优化算法
原文传递
基于MIDBO-BP-Adaboost的高铁路基沉降预测
2
作者 贺全鹏 司涌波 李少远 《北京交通大学学报》 北大核心 2025年第3期182-192,共11页
针对温度、湿度等因素影响带来的高铁路基沉降问题,提出一种改进的蜣螂优化算法(My Improved Dung Beetle Optimization Algorithm,MIDBO)-反向传播(Back Propagation,BP)神经网络-自适应提升算法(Adaptive Boosting,Adaboost)组合预测... 针对温度、湿度等因素影响带来的高铁路基沉降问题,提出一种改进的蜣螂优化算法(My Improved Dung Beetle Optimization Algorithm,MIDBO)-反向传播(Back Propagation,BP)神经网络-自适应提升算法(Adaptive Boosting,Adaboost)组合预测模型.首先,为解决蜣螂优化算法易陷入局部最优和复杂工程应用效果不佳的缺陷,提出一种复合混沌映射、模拟退火算法、非线性指数动态权重系数多策略融合的MIDBO算法;然后,利用MIDBO算法对BP神经网络进行优化,再与Adaboost算法结合,建立了MIDBO-BP-Adaboost模型;最后,将不同模型应用于兰新高速铁路进行预测分析.研究结果表明:MIDBO算法有效优化了BP神经网络,提高了模型精度;Adaboost算法提高了模型的稳健性和泛化能力;与BP预测模型相比,MIDBO-BP-Adaboost模型的平均绝对误差、均方根误差、平均绝对百分比误差分别减小63.81%、63.84%、62.26%,拟合系数提高18.82%.研究成果可以为兰新高铁路基沉降预测提供参考. 展开更多
关键词 交通信息工程及控制 高速铁路 路基沉降 蜣螂优化算法 反向传播神经网络 自适应提升算法
在线阅读 下载PDF
基于AdaBoost-KF-BP模型的地铁基坑沉降预测
3
作者 黄路平 奚立时 《北京测绘》 2025年第7期1070-1075,共6页
为解决反向传播(BP)神经网络在基坑沉降预测精度与稳定性方面的局限性,本文提出一种全面的基坑沉降组合预测模型。此组合模型通过引入卡尔曼滤波(KF)算法与BP神经网络,构建KF-BP模型,并以此模型作为自适应增强(AdaBoost)算法的弱预测器... 为解决反向传播(BP)神经网络在基坑沉降预测精度与稳定性方面的局限性,本文提出一种全面的基坑沉降组合预测模型。此组合模型通过引入卡尔曼滤波(KF)算法与BP神经网络,构建KF-BP模型,并以此模型作为自适应增强(AdaBoost)算法的弱预测器。AdaBoost算法凭借其权重分配与高效集成策略,组合多个KF-BP单元,形成高性能的AdaBoost-KF-BP强预测器。以杭州市某地铁站点基坑为实际应用场景,在Matlab环境中逐步构建传统BP神经网络、KF-BP模型、AdaBoost-BP模型及AdaBoost-KF-BP模型的基坑沉降预测实验。不同对比模型均经过实际沉降数据的训练,采用训练好的模型对基坑沉降进行预测。实验结果表明,较对比模型,本文提出的AdaBoost-KF-BP模型在稳定性和预测精度上均展现出显著提升,验证了本文提出模型的有效性与优越性。 展开更多
关键词 地铁基坑 沉降预测 反向传播(BP)神经网络 卡尔曼滤波 自适应增强算法
在线阅读 下载PDF
基于聚类和AdaBoost的ADS⁃B数据质量综合评估方法 被引量:5
4
作者 张召悦 阳颖 《航空学报》 EI CAS CSCD 北大核心 2024年第13期381-392,共12页
为更好地发挥ADS-B数据应用价值,针对ADS-B数据质量评估过程中传统方法无法客观准确得到质量等级的问题,在分析行业应用、发射设备性能、数据安全等方面对ADS-B数据质量需求的基础上,构建了ADS-B数据质量评估指标体系,提出了基于集成学... 为更好地发挥ADS-B数据应用价值,针对ADS-B数据质量评估过程中传统方法无法客观准确得到质量等级的问题,在分析行业应用、发射设备性能、数据安全等方面对ADS-B数据质量需求的基础上,构建了ADS-B数据质量评估指标体系,提出了基于集成学习自适应提升算法(AdaBoost)的新型数据质量评估方法。该方法通过K-means聚类确定最佳质量等级类别,结合熵权法和双基点法(TOPSIS)打分确定数据标签,并采用AdaBoost算法对评估模型进行了训练和优化。以天津机场数据为例,实验得出ADS-B数据质量的最佳等级划分为5级,得到的数据质量评估模型准确率高达98.5%,验证了该方法可以有效避免主观因素对评估结果的影响,并得到最优的质量等级划分,能够提高评估结果的稳定性和精确度。 展开更多
关键词 ADS-B数据质量 K-MEANS聚类 熵权法 双基点法 TOPSIS 自适应提升算法
原文传递
顾及地球物理效应的GNSS高程时间序列AdaBoost预测和插值方法 被引量:3
5
作者 鲁铁定 李祯 《测绘学报》 EI CSCD 北大核心 2024年第6期1077-1085,共9页
传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和... 传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和插值性能,试验选取4个GNSS站的高程时间序列进行分析。建模试验表明,相较于Prophet模型,AdaBoost模型的拟合精度提升了约35%;预测结果表明,在12个月的预测周期内,AdaBoost模型在4个GNSS站的MAE值为4.0~4.5 mm,RMSE值约为5.0~6.0 mm;插值试验表明,相较于三次样条插值方法,AdaBoost插值模型的精度约提升了15%~28%。预测和插值试验表明,顾及地球物理效应的AdaBoost模型可以应用于GNSS高程时间序列预测与插值。 展开更多
关键词 GNSS高程时间序列 地球物理效应 预测 插值 自适应提升算法
在线阅读 下载PDF
基于PCA-Adaboost-GBDT的短期风电功率预测 被引量:1
6
作者 郑伟宏 朱峰刚 +2 位作者 王小娟 胡兵 薛萌萌 《电气自动化》 2024年第4期80-83,共4页
为解决单一预测模型难以准确预测风电功率的问题,提出了一种基于主成分分析(principal component analysis,PCA)-自适应增强(adaptive boosting,Adaboost)-梯度提升树(gradient boosting decision tree,GBDT)的风电功率短期预测方法。使... 为解决单一预测模型难以准确预测风电功率的问题,提出了一种基于主成分分析(principal component analysis,PCA)-自适应增强(adaptive boosting,Adaboost)-梯度提升树(gradient boosting decision tree,GBDT)的风电功率短期预测方法。使用PCA方法对数据降维分析,使用Adaboost-GBDT组合模型对风电功率数据进行训练。结果表明,所提算法在准确性和效率方面都具有明显的优势。研究结果为风电功率准确预测提供参考与借鉴。 展开更多
关键词 风电功率 功率预测 梯度提升树 自适应增强 组合模型
在线阅读 下载PDF
基于KPCA融合AdaBoost-IBOA-ELM模型的TE过程故障诊断 被引量:1
7
作者 赵文虎 蔡生宏 王文 《工业仪表与自动化装置》 2024年第4期102-109,共8页
为了保障化工系统的安全运行和高质量生产,准确判别化工过程的故障就显得尤为重要。针对田纳西-伊斯曼(Tennessee Eastman,TE)过程故障难以区分以及神经网络等方法在故障诊断中分类准确率较低、分类不稳定等问题,提出一种优化改进极限... 为了保障化工系统的安全运行和高质量生产,准确判别化工过程的故障就显得尤为重要。针对田纳西-伊斯曼(Tennessee Eastman,TE)过程故障难以区分以及神经网络等方法在故障诊断中分类准确率较低、分类不稳定等问题,提出一种优化改进极限学习机(extreme learning machine,ELM)的TE过程故障诊断模型。首先利用核主成分分析(kernel principal components analysis,KPCA)方法对TE过程数据进行降维和特征提取,然后采用改进蝴蝶算法(improved butterfly optimization algorithm,IBOA)优化ELM的权值和阈值,最后利用自适应提升(adaptive boosting,AdaBoost)算法对分类器进行集成,完成故障分类。仿真结果表明,IBOA比其他优化算法具有更好的寻优能力,改进效果显著,AdaBoost-IBOA-ELM模型能够对测试集中的不同故障进行准确分类,最后的分类准确率高达98.5%,通过和其他网络对比,进一步验证了模型的合理性和优越性。 展开更多
关键词 田纳西-伊斯曼过程 核主成分分析 改进蝴蝶算法 极限学习机 故障分类
在线阅读 下载PDF
基于集成学习模型与贝叶斯优化算法的成矿预测 被引量:1
8
作者 孔春芳 田倩 +3 位作者 刘健 蔡国荣 赵杰 徐凯 《地学前缘》 北大核心 2025年第4期122-139,共18页
全球进入隐伏矿体勘查时代,急需新的找矿预测方法。利用集成学习进行的数据驱动的成矿预测模型正在成为深部隐伏矿产勘探的有力工具。然而,基于集成学习的成矿预测模型面临着一些普遍的问题,特别是模型的参数调优。模型的参数调优是一... 全球进入隐伏矿体勘查时代,急需新的找矿预测方法。利用集成学习进行的数据驱动的成矿预测模型正在成为深部隐伏矿产勘探的有力工具。然而,基于集成学习的成矿预测模型面临着一些普遍的问题,特别是模型的参数调优。模型的参数调优是一个非常耗时的过程,需要繁琐的计算和足够的专家经验。本文提出了一种基于多源地学知识与贝叶斯优化算法的集成学习模型来解决上述问题。具体来说,首先,基于多源地学知识,构建锰矿成矿预测数据库;其次,基于自适应提升模型(Adaptive Boosting,AdaBoost)和随机森林(Random Forest,RF)模型,建立黔东北锰矿成矿预测模型;然后,采用贝叶斯优化算法(Bayesian Optimization,BO),通过5倍交叉验证的辅助,寻找BO-AdaBoost和BO-RF模型最合适的超参数组合;最后,利用精度、准确率、召回率、F_(1)分数、kappa系数、AUC值等参数及已有成果检测模型的性能。实验结果发现,BO-AdaBoost和BO-RF模型的AUC值都得到了显著的提高,表明BO是一个强大的优化工具,优化结果为集成学习模型的超参数设置提供了参考。同时,实验结果也表明:BO-AdaBoost模型(92.8%)比BO-RF模型(89.9%)具有更高的预测精度和地质泛化能力,在成矿预测方面具有巨大潜力。基于BO-AdaBoost模型的预测图为黔东北隐伏锰矿矿床的勘探提供了重要线索,并可以指导未来的矿产勘探与开发。 展开更多
关键词 集成学习 自适应提升模型 随机森林 贝叶斯优化算法 隐伏锰矿 成矿预测
在线阅读 下载PDF
一种基于数据驱动的空调负荷预测方法 被引量:1
9
作者 周孟然 周光耀 +6 位作者 胡锋 朱梓伟 张奇奇 王玲 孔伟乐 吴长臻 崔恩汉 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期128-134,共7页
空调负荷预测是空调负荷潜力分析和电网空调负荷调控的基础,为了精确地对空调负荷进行预测,文中提出了一种考虑到外界影响因素以及集成优化的空调负荷预测方法.首先,拟定好实验运行方案并采集影响因素数据.其次,使用近邻成分分析(NCA)... 空调负荷预测是空调负荷潜力分析和电网空调负荷调控的基础,为了精确地对空调负荷进行预测,文中提出了一种考虑到外界影响因素以及集成优化的空调负荷预测方法.首先,拟定好实验运行方案并采集影响因素数据.其次,使用近邻成分分析(NCA)方法进行特征选择,剔除重要度小的特征.然后使用白鲨优化算法(white shark optimizer,WSO)对支持向量回归(support vector regression,SVR)的正则化参数和核函数的宽度参数进行优化,最后,结合自适应提升算法(adaptive boosting,Adaboost)构建Adaboost-WSO-SVR主模型,检验其精度并与其他方法进行比较.结果表明,提出的Adaboost-WSO-SVR主模型相比于集成优化后的BP,ELM模型精度更高.可知提出的方法在负荷预测方面效果更好,为空调节能优化控制策略提供依据. 展开更多
关键词 空调负荷 负荷预测 特征选择 白鲨优化算法 自适应提升算法 支持向量回归
在线阅读 下载PDF
基于集成学习强化BPNN的掘进工作面温度预测模型
10
作者 马恒 张世龙 高科 《工矿自动化》 北大核心 2025年第8期88-94,158,共8页
针对现有掘进工作面温度预测方法存在预测模型泛化性不强、鲁棒性较差,且对非线性多维数据的预测能力有限的问题,提出了一种基于集成学习强化反向传播神经网络(BPNN)的掘进工作面温度预测模型,即t−SNE−BPNN−AdaBoost。首先采用t−分布随... 针对现有掘进工作面温度预测方法存在预测模型泛化性不强、鲁棒性较差,且对非线性多维数据的预测能力有限的问题,提出了一种基于集成学习强化反向传播神经网络(BPNN)的掘进工作面温度预测模型,即t−SNE−BPNN−AdaBoost。首先采用t−分布随机邻域嵌入(t−SNE)非线性降维技术,将通风机前风量、温度、相对湿度等7项高维特征降至3维,保留数据局部结构并去除噪声。然后将降维数据输入BPNN作为基分类器,经迭代训练得到初步模型。最后通过自适应推进算法(AdaBoost)集成学习,迭代训练多个BPNN弱分类器并加权组合为强分类器,增强模型泛化能力。将60组掘进工作面实测数据按8∶2划分为训练集与测试集,经5折交叉验证确定AdaBoost最优弱学习器数量为30。实验结果表明:①t−SNE−BPNN−AdaBoost预测曲线和真实值贴合度最优,整体误差小,在温度突变区段适应力强,稳定性远超SVM,BPNN和t−SNE−BPNN。②t−SNE−BPNN−AdaBoost的预测相对误差最小,几乎在5%以内,表现出最优的预测精度。③在测试集上,t−SNE−BPNN−AdaBoost的决定系数为0.9784,较SVM,BPNN,t−SNE−BPNN分别提高了60.3%,17.2%,8.1%;平均绝对误差为0.1676,均方误差为0.0567,平均绝对百分比误差为0.9640,指标均显著优于SVM,BPNN和t−SNE−BPNN,在温度突变区段适应性更强。 展开更多
关键词 掘进工作面温度预测 t−分布随机邻域嵌入 BP神经网络 t−SNE 自适应推进算法 adaboost集成学习 5折交叉验证
在线阅读 下载PDF
基于Elman_AdaBoost强预测器的目标威胁评估模型及算法 被引量:30
11
作者 王改革 郭立红 +2 位作者 段红 刘逻 王鹤淇 《电子学报》 EI CAS CSCD 北大核心 2012年第5期901-906,共6页
目标威胁评估是协同目标攻击中的关键问题.为提高空战目标威胁评估的准确性和实用性,建立了E-lman_AdaBoost强预测器目标威胁评估模型及算法.首先,介绍了Elman_AdaBoost强预测器;其次,建立了Elman_Ad-aBoost强预测器目标威胁评估模型;最... 目标威胁评估是协同目标攻击中的关键问题.为提高空战目标威胁评估的准确性和实用性,建立了E-lman_AdaBoost强预测器目标威胁评估模型及算法.首先,介绍了Elman_AdaBoost强预测器;其次,建立了Elman_Ad-aBoost强预测器目标威胁评估模型;最后,提出了基于Elman_AdaBoost强预测器目标威胁评估模型的算法.采集75组数据用于实验,其中60组作为训练集,15组作为测试集.分别选择Elman网络隐层节点数L=7,11,14,18和弱预测器数目K=6,10,16,20进行实验,结果表明,Elman_AdaBoost强预测器算法预测误差远小于弱预测器且在L=7和K=6时误差达到最小.Elman_AdaBoost强预测器目标威胁评估模型和算法具有很好的预测能力,可以快速、准确地完成作战目标威胁评估. 展开更多
关键词 目标威胁评估 模型 算法 Elman_adaboost
在线阅读 下载PDF
BP-AdaBoost模型在光纤陀螺零偏温度补偿中的应用 被引量:18
12
作者 刘元元 杨功流 李思宜 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第2期235-239,共5页
针对光纤陀螺零偏漂移随温度呈复杂的非线性变化,建立了BP-AdaBoost(Back Propagation neural network,Adaptive Boosting)模型对零偏进行补偿,改善了光纤陀螺的零偏稳定性能.同时,研究了模型参数对预测精度的影响,给出了BP神经网络隐... 针对光纤陀螺零偏漂移随温度呈复杂的非线性变化,建立了BP-AdaBoost(Back Propagation neural network,Adaptive Boosting)模型对零偏进行补偿,改善了光纤陀螺的零偏稳定性能.同时,研究了模型参数对预测精度的影响,给出了BP神经网络隐含层神经元个数的选择以及AdaBoost模型迭代次数的确定方法.运用AdaBoost算法提升单个BP神经网络的预测能力,提高了集成模型整体的预测精度.对采集的光纤陀螺输出实测数据进行了事后仿真,结果表明,BP-AdaBoost模型相比传统的线性回归模型、混合线性回归模型、单个BP神经网络模型的补偿效果更显著,验证了该模型的有效性,具有重大的工程应用参考价值. 展开更多
关键词 光纤陀螺 温度补偿 adaboost算法 BP神经网络
原文传递
支持向量机与AdaBoost的结合算法研究 被引量:20
13
作者 张晓龙 任芳 《计算机应用研究》 CSCD 北大核心 2009年第1期77-78,110,共3页
将支持向量机与AdaBoost算法相结合,称其为Boost-SVM。从提升泛化性能和预测精度等方面对支持向量机的学习算法进行了研究与比较。Boost-SVM实验结果表明,该算法提高了支持向量机的预测精度并优化了学习机的性能。
关键词 支持向量机 增强法 自适应增强算法 算法优化
在线阅读 下载PDF
P300 Speller中基于AdaBoost SVM的导联筛选研究 被引量:7
14
作者 綦宏志 许敏鹏 +3 位作者 明东 万柏坤 刘志朋 殷涛 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第5期985-990,共6页
P300 Speller是目前少数可以用于临床残疾人功能补偿的脑-机接口系统,P300 Speller的字符识别效率与脑电信号采集的头皮表面电极位置密切相关,过多的电极不但增加了使用者的不适感,且易引入噪声干扰进而影响系统的稳定性。采用并发展了... P300 Speller是目前少数可以用于临床残疾人功能补偿的脑-机接口系统,P300 Speller的字符识别效率与脑电信号采集的头皮表面电极位置密切相关,过多的电极不但增加了使用者的不适感,且易引入噪声干扰进而影响系统的稳定性。采用并发展了一种基于AdaBoost SVM(adaptive boosting support vector machine)的特征筛选方法,对脑电导联进行优化筛选,通过对6位受试者的实验数据处理及分析,结果表明该方法可以在不显著影响识别效率的基础上降低导联数量76%以上。另外,相较于经典的SVM-RFE特征筛选方法,该方法极大降低了计算复杂度,更适用于训练数据庞大的脑电特征优化问题。 展开更多
关键词 脑-机接口 自适应增强 支持向量机 字符识别
在线阅读 下载PDF
基于频率自适应的Buck-Boost矩阵变换器主电路参数优选方法 被引量:1
15
作者 杨昭 张小平 钟达栩 《太阳能学报》 北大核心 2025年第7期290-297,共8页
提出一种基于频率自适应的Buck-Boost矩阵变换器(BBMC)主电路参数优选方法。确定其优化对象与优化目标,建立相关数学模型及其多目标优化适应度函数,在此基础上提出采用樽海鞘群优化算法对其主电路参数展开优化研究,并进而针对不同额定... 提出一种基于频率自适应的Buck-Boost矩阵变换器(BBMC)主电路参数优选方法。确定其优化对象与优化目标,建立相关数学模型及其多目标优化适应度函数,在此基础上提出采用樽海鞘群优化算法对其主电路参数展开优化研究,并进而针对不同额定输出频率下的最优主电路参数采用数值拟合方法研究确定其间变化规律的函数关系式,最后通过构建仿真模型与硬件实验装置对其效果进行验证。 展开更多
关键词 Buck-Boost矩阵变换器 频率自适应 参数优化 樽海鞘群算法 多目标优化 数值拟合
原文传递
基于CART和自适应Boosting算法的移动通信企业客户流失预测模型 被引量:16
16
作者 张玮 杨善林 刘婷婷 《中国管理科学》 CSSCI 北大核心 2014年第10期90-96,共7页
客户流失问题一直以来都受到企业的重视,如何有效预测流失客户是一个重要课题。本文通过对某通信企业原始数据进行严格的数据预处理,以及利用直方图检验和卡方检验相结合的方法对模型变量进行筛选,同时采用抽样的方法选取出模型的训练... 客户流失问题一直以来都受到企业的重视,如何有效预测流失客户是一个重要课题。本文通过对某通信企业原始数据进行严格的数据预处理,以及利用直方图检验和卡方检验相结合的方法对模型变量进行筛选,同时采用抽样的方法选取出模型的训练样本和测试样本,并利用分类回归树算法和自适应Boosting算法生成相应的强分类器模型,仿真实验结果表明本文使用的模型在预测该通信企业的离网客户中具有较高的准确性,从模型的ROC曲线可知,该模型是一个比较理想的分类模型。另外,本文通过与其他两个模型的预测结果进行比较发现本文的集成模型具有更好的预测性能。 展开更多
关键词 客户流失 自适应boosting算法 CART算法 预测
原文传递
基于分类器相关性的Adaboost人脸检测算法 被引量:3
17
作者 张君昌 李倩 贾靖 《计算机应用》 CSCD 北大核心 2009年第12期3346-3348,共3页
为了提高传统Adaboost算法的集成性能,提出一种基于分类器相关性的Adaboost算法。该方法在弱分类器的训练过程中加入分类器的相关性判定,使每一个弱分类器的生成不仅与当前分类器有关,而且与前面若干个分类器相关,并将由此生成的弱分类... 为了提高传统Adaboost算法的集成性能,提出一种基于分类器相关性的Adaboost算法。该方法在弱分类器的训练过程中加入分类器的相关性判定,使每一个弱分类器的生成不仅与当前分类器有关,而且与前面若干个分类器相关,并将由此生成的弱分类器组合成新的强分类器。在CMU正面人脸检测集上的仿真结果表明,较传统的Adaboost算法,基于分类器相关性的Adaboost人脸检测算法具有更好的检测效率,同时降低了误检率。 展开更多
关键词 人脸检测 分类器相关性 自适应提升算法
在线阅读 下载PDF
基于相关性的AdaBoost人脸检测算法 被引量:7
18
作者 张君昌 樊伟 《计算机工程》 CAS CSCD 北大核心 2011年第8期158-160,163,共4页
为提高传统AdaBoost算法的集成性能,降低算法复杂度,提出2种基于分类器相关性的AdaBoost算法。在弱分类器的训练过程中,加入Q统计量进行判定。每个弱分类器的权重更新不仅与当前分类器有关,而且需要考虑到前面的若干分类器,以有效降低... 为提高传统AdaBoost算法的集成性能,降低算法复杂度,提出2种基于分类器相关性的AdaBoost算法。在弱分类器的训练过程中,加入Q统计量进行判定。每个弱分类器的权重更新不仅与当前分类器有关,而且需要考虑到前面的若干分类器,以有效降低弱分类器间的相似性,剔除相似特征。仿真结果表明,该算法具有更好的检测率,同时可降低误检率,改进分类器的整体性能。 展开更多
关键词 人脸检测 分类器相关性 自适应提升算法 Q统计量
在线阅读 下载PDF
结合加权KNN和自适应牛顿法的稳健Boosting方法 被引量:5
19
作者 罗森林 赵惟肖 潘丽敏 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第1期112-120,共9页
Boosting是机器学习领域中重要的集成学习方法,以AdaBoost为代表的Boosting算法通过在组合弱学习器时不断加强对错分类样本的关注以构建性能优异的强学习器,而该训练机制对噪声点的无差别对待易引发学习器对噪声过拟合,从而削弱算法的... Boosting是机器学习领域中重要的集成学习方法,以AdaBoost为代表的Boosting算法通过在组合弱学习器时不断加强对错分类样本的关注以构建性能优异的强学习器,而该训练机制对噪声点的无差别对待易引发学习器对噪声过拟合,从而削弱算法的稳健性.针对该问题,提出结合加权KNN和自适应牛顿法的稳健Boosting方法.该方法首先通过加权KNN估计样本的噪声先验概率,然后使用噪声先验概率修正Logit损失构建一种新的损失函数,最后采用自适应牛顿法进行损失函数的优化求解.提出方法引导分类器在给予错分类样本更高权重的同时,对噪声先验概率大的样本给予相应的惩罚,使噪声样本的权重得到有效的缩减.结果表明,与其他稳健Boosting方法对比,在不同噪声水平下以及真实的医疗数据集的不同评价指标下,该方法表现出更好的稳健性,具有明显的应用价值. 展开更多
关键词 adaboost算法 噪声先验概率 加权KNN 损失函数 自适应牛顿法
在线阅读 下载PDF
基于AdaBoost的改进模糊分类规则集成学习 被引量:2
20
作者 方敏 王宝树 《电子与信息学报》 EI CSCD 北大核心 2005年第5期835-837,共3页
基于集成学习提出了一种新的模糊分类规则的产生算法。将分类规则的前件、后件模糊化,在自适应提升(Adaptive Boosting,AdaBoost)算法的迭代中,调整训练实例的分布,利用遗传算法产生模糊分类规则。并在规则学习的适应度函数中引入训练... 基于集成学习提出了一种新的模糊分类规则的产生算法。将分类规则的前件、后件模糊化,在自适应提升(Adaptive Boosting,AdaBoost)算法的迭代中,调整训练实例的分布,利用遗传算法产生模糊分类规则。并在规则学习的适应度函数中引入训练实例的分布,使得模糊分类规则在产生阶段就考虑相互之间的协作,产生具有互补性的分类规则集。从而改善了模糊分类规则的整体识别能力,提高了分类识别精度。 展开更多
关键词 模糊分类规则 adaboost算法 分类器集成
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部