期刊文献+

Boosting算法及其在动态视频图像中的应用 被引量:4

Boosting algorithm and its application in dynamic video frequency image
在线阅读 下载PDF
导出
摘要 Boosting是一种有效的分类器组合方法,它用某个分类算法生成一系列的基分类器,每个基分类器的训练依赖于在其之前产生的分类器的分类结果,基分类器在训练集上的错误率用于调整训练样本的概率分布,最终分类器通过单个基分类器的加权投票建立起来。将Boosting算法应用在动态车型图像检测中,大大提高了对运动过程中车辆的识别能力,对智能交通系统的发展起着推动作用。 Boosting is an effective method of classifier combination, which uses a classifier algorithm to generate a series of base classifiers, each basing its training on the classified result generated before it, while error rate of base classifier on Training Set is used to adjust the probability distribution of training samples, and the final classifier is established by the weighted vote of single base classifiers. In this paper, boosting is used in dynamic algorithm model image detection, greatly improving the recognizability of vehicles in motion, and promoting the development of intelligent transportation systems.
作者 阴国富
出处 《河北工业科技》 CAS 2008年第5期310-311,338,共3页 Hebei Journal of Industrial Science and Technology
基金 渭南师范学院科研基金资助项目(08YKS027)
关键词 BOOSTING算法 ADABOOST算法 分类器 车型识别 Boosting algorithm AdaBoost algorithm classifier vehicle recognition
  • 相关文献

参考文献8

  • 1SCHAPIRE R E. The strength of weak learnability[J]. Machine Learning, 1990,5 (2) : 197-227.
  • 2阴国富.基于Boosting算法的车牌汉字识别[J].现代电子技术,2006,29(17):127-129. 被引量:2
  • 3WANG Chong,WANG Wen -yuan. Using term clustering and supervised term affinity construction to Boost text classlfication[J].Lecture Notes in Computer Science, 2005, 35 (18): 813-819.
  • 4广州市交通局.广州市智能交通系统(ITS)发展战略研究[EB/OL]. http://www, gzbus, com/keji/lunwen/lunwen10. htm,2002-11-12.
  • 5清华大学交通研究所.中国智能交通系统发展框架构想[EB/OL]. http://166. 111. 44.9/{orum/sqx. htm, 2005-01-20.
  • 6金鸣,邱锡鹏,吴立德.改进的AdaBoost分类器在视频中的体育场景检测[J].计算机工程,2006,32(12):229-231. 被引量:11
  • 7李斌,王紫石,汪卫,施伯乐.AdaBoost算法的一种改进方法[J].小型微型计算机系统,2004,25(5):869-871. 被引量:16
  • 8SCHAPIRE R E, ROCHERY M, RAHIM M, et al. Incorporating prior know ledge into boosting[A]. Proc of the 19th International Conference on Machine Learning [C]. San Franasco:Morgan Kaufmann Publishers, 2002. 538-545.

二级参考文献19

  • 1Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting [J].Journal of Computer and System Sciences, August 1997, 55 (1):119-139.
  • 2Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm[C]. In Machine Learning: Proceedings of the Thirteenth International Conference, 1996, 148-156.
  • 3Robert E Schapire. The boosting approach to machine learning:an overview [C]. In MSRI Workshop on Nonlinear Estimation and Classification, 2002
  • 4Quinlan J R. Bagging, boosting, and C4. 5 [C]. In Proceedings of the Thirteenth National Conference on Artificial Intelligence,1996,725-730.
  • 5Ross Quinlan J. C4. 5: Programs for machine learning[M]. Morgan Kaufmann, 1993.
  • 6Liu Z,Huang J,Wang Y.Classification of TV Programs Based on Audio Information Using Hidden Markov Model[C].proc.of IEEE Workshop on Multimedia Signal Processing,1998.
  • 7Dimitrova N,Agnihotri L,Wei G.Video Classification Based on HMM Using Text and Faces[C].Proc.of the European Conference on Signal Processing,Finland,2000.
  • 8Lin W,Hauptmann A.News Video Classification Using SVM-based Multimodal Classifiers and Combination Strategies[C].Proc.of the tenth ACM Zutt.Conf.on Multimeelia Juan Les Pins,France,2002-12-01.
  • 9Ariki Y,Sugiyama Y.Classification of TV Sports News by DCT Features Using Multiple Subspace Method[C].Proceedings of the 14th International Conference on Pattern Recognition,1998:1488-1491.
  • 10Vailaya A,Figueiredo M.Image Classification for Content-based Indexing[J].IEEE Trans.on Image Processing,2001,10(1):117-130.

共引文献25

同被引文献20

  • 1金鸣,邱锡鹏,吴立德.改进的AdaBoost分类器在视频中的体育场景检测[J].计算机工程,2006,32(12):229-231. 被引量:11
  • 2张铮,张元.基于DirectShow的无线移动视频监控系统[J].微计算机信息,2006,22(11S):136-138. 被引量:13
  • 3郑建湖,王明华,董德存,陈洪.一类特殊路口的多相位模糊交通控制[J].陕西理工学院学报(自然科学版),2007,23(1):38-40. 被引量:4
  • 4Schapire R E.The strength of weak learnability[J].Machine Learning,1990,5(2):197-227.
  • 5http://www.gzbus.com/keji/lunwen/lunwen10.htm.广州市智能交通系统 (ITS)发展战略研究.
  • 6http://166.111.44.9/forum/sqx.htm.中国智能交通系统发展框架构想.
  • 7Chong Wang,Wenyuan Wang.Using Term Clustering and Supervised Term A ffinity Construction to Boost Text Classification[J].Lecture Notes in Computer Science,2005,3518:813-819.
  • 8Schap ire R E,RocheryM,Rahim M,et al.Incorporating Prior Know ledge into Boosting[A].In:Proc of the 19th International Conference on Machine Lemming[C].Sydney,2002,538-545.
  • 9广州市智能交通系统(1TS)发展战略研究.http://www.gzbus.com/keji/lunwen/lunwen10.htm.
  • 10Schapire R E, Rochery M, Rahim M, et al. Incorporating prior knowledge into boosting. In: Proc of the 19th International Conference on Machine Lemming. Sydney,2002:538--545

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部