Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the meta...Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carrier in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.展开更多
采用天冬氨酸内切酶(Asp endoproteinase,AspN)在37℃诱导乳清分离蛋白(whey protein isolate,WPI)制备蛋白质纳米纤维(protein nanofibrils,PNFs),考察WPI不同水解时间对产物PNFs形貌的影响。利用透射电子显微镜、原子力显微镜、小分...采用天冬氨酸内切酶(Asp endoproteinase,AspN)在37℃诱导乳清分离蛋白(whey protein isolate,WPI)制备蛋白质纳米纤维(protein nanofibrils,PNFs),考察WPI不同水解时间对产物PNFs形貌的影响。利用透射电子显微镜、原子力显微镜、小分子蛋白质十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、硫磺素T荧光、红外光谱以及激光散射法对PNFs及形成过程进行表征。结果显示,该方法制备的产物PNFs呈乳白色,AspN水解得到的5 kD左右的多肽为构筑单元,β-折叠为PNFs稳定存在的主要二级结构,PNFs平均粒径随水解时间延长而增大。酶法制备PNFs解决了酸法中的褐变问题,有望拓展其在食品领域的应用。展开更多
文摘Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carrier in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.