By combining Argos drifter buoys and TOPEX/POSEIDON altimeter data, the time series of sea-surface velocity fields in the Kuroshio Current (KC) and adjacent regions are established. And the variability of the KC from ...By combining Argos drifter buoys and TOPEX/POSEIDON altimeter data, the time series of sea-surface velocity fields in the Kuroshio Current (KC) and adjacent regions are established. And the variability of the KC from the Luzon Strait to the Tokara Strait is studied based on the velocity fields. The results show that the dominant variability period varies in different segments of the KC: The primary period near the Luzon Strait and to the east of Taiwan Island is the intra-seasonal time scale; the KC on the continental shelf of the ECS is the steadiest segment without obvious periodicity, while the Tokara Strait shows the period of seasonal variability. The diverse periods are caused by the Rossby waves propagating from the interior ocean, with adjustments in topography of island chain and local wind stress.展开更多
This study investigates the surface circulation in the Indian Ocean using Argos float data over the period 1979-2011.The Argos observations manifest some new phenomena.The climatological annual mean circulation shows ...This study investigates the surface circulation in the Indian Ocean using Argos float data over the period 1979-2011.The Argos observations manifest some new phenomena.The climatological annual mean circulation shows that the surface current becomes much stronger after turning around in shore in the western Indian Ocean.In the tropical Indian Ocean,the Great Whirl(GW) to the east of Somalia develops quickly in spring(April-May) as the monsoon reverses to move northward,becoming strongest in summer(June-September) and disappearing in autumn(October-November).The west end of the Agulhas retroflection can reach 18°E,and it exhibits a seasonal variation.At approximately 90°E,the Agulhas Return Current combines with the eastward South Atlantic Current and finally joins the Antarctic Circumpolar Current.展开更多
基金Supported by the National Basic Research Program of China (973 Program, Nos. 2007CB411804, 2005CB422303)the NSFC (No. 40706006)+2 种基金the Key Project of International Science and Technology Cooperation Program of China (No. 2006DFB21250)the "111 Project" (B07036)the Program for New Century Excellent Talents in University (NECT-07-0781)
文摘By combining Argos drifter buoys and TOPEX/POSEIDON altimeter data, the time series of sea-surface velocity fields in the Kuroshio Current (KC) and adjacent regions are established. And the variability of the KC from the Luzon Strait to the Tokara Strait is studied based on the velocity fields. The results show that the dominant variability period varies in different segments of the KC: The primary period near the Luzon Strait and to the east of Taiwan Island is the intra-seasonal time scale; the KC on the continental shelf of the ECS is the steadiest segment without obvious periodicity, while the Tokara Strait shows the period of seasonal variability. The diverse periods are caused by the Rossby waves propagating from the interior ocean, with adjustments in topography of island chain and local wind stress.
基金supported by the National Basic Research Program of China(2010CB950302)the Knowledge Innovation Program of the Chinese Academy of Sciences(SQ201108)the National Natural Science Foundation of China (41176024,41176023,and 41149908)
文摘This study investigates the surface circulation in the Indian Ocean using Argos float data over the period 1979-2011.The Argos observations manifest some new phenomena.The climatological annual mean circulation shows that the surface current becomes much stronger after turning around in shore in the western Indian Ocean.In the tropical Indian Ocean,the Great Whirl(GW) to the east of Somalia develops quickly in spring(April-May) as the monsoon reverses to move northward,becoming strongest in summer(June-September) and disappearing in autumn(October-November).The west end of the Agulhas retroflection can reach 18°E,and it exhibits a seasonal variation.At approximately 90°E,the Agulhas Return Current combines with the eastward South Atlantic Current and finally joins the Antarctic Circumpolar Current.