Immobilization of alcalase on a ZIF-L(A@ZIF-L)support was explored for its potential application in producing hydrolysates of proteins extracted from microalgae.The immobilized enzyme was characterized using FTIR,XRD,...Immobilization of alcalase on a ZIF-L(A@ZIF-L)support was explored for its potential application in producing hydrolysates of proteins extracted from microalgae.The immobilized enzyme was characterized using FTIR,XRD,SEM,and TGA,and the maximum adsorption capacity was found to be 672.1±5.5 mg g^(-1)at 40℃.Adsorption equilibrium data indicated that alcalase physically adsorbed onto the ZIF-L,with the isotherm well described by the Freundlich model.The adsorption kinetics aligned best with the pseudo-first order model,suggesting that both film and intraparticle diffusion were significant.The hydrolytic activity of the immobilized A@ZIF-L was initially tested using BSA as a substrate.A diffusion-reaction model was developed and numerically solved to describe the reaction,with results confirming the presence of mass transfer limitations in the early stages of hydrolysis.The stability of the immobilized enzyme was demonstrated by retaining over 90%of its initial activity after being stored at 4℃ for 70 days.Furthermore,the immobilized A@ZIF-L was used to hy-drolyze protein extracts derived from Scenedesmus sp.microalgae.The bioactivity of the resulting protein hy-drolysates was characterized,showing a total phenolic content of 29.1±0.6 mg GAE g^(-1)and a radical scavenging activity of 82.75±2.20%.These findings highlight the potential of Alcalase-based biocatalysts for applications in the food industry.展开更多
本文对碱性蛋白酶Alcalase AF 2.4L水解玉米蛋白的动力学特征进行了较为系统的研究:(1)探讨固液比、酶量、温度、pH值等因素对玉米蛋白水解度的影响,研究确定了碱性蛋白酶Alcalase AF 2.4L水解玉米蛋白的最佳工艺控制条件;(2)根据所建立...本文对碱性蛋白酶Alcalase AF 2.4L水解玉米蛋白的动力学特征进行了较为系统的研究:(1)探讨固液比、酶量、温度、pH值等因素对玉米蛋白水解度的影响,研究确定了碱性蛋白酶Alcalase AF 2.4L水解玉米蛋白的最佳工艺控制条件;(2)根据所建立的pH-stat酶解体系确定了Vmax和Km,为更有效地利用玉米蛋白资源奠定了理论基础。展开更多
文摘Immobilization of alcalase on a ZIF-L(A@ZIF-L)support was explored for its potential application in producing hydrolysates of proteins extracted from microalgae.The immobilized enzyme was characterized using FTIR,XRD,SEM,and TGA,and the maximum adsorption capacity was found to be 672.1±5.5 mg g^(-1)at 40℃.Adsorption equilibrium data indicated that alcalase physically adsorbed onto the ZIF-L,with the isotherm well described by the Freundlich model.The adsorption kinetics aligned best with the pseudo-first order model,suggesting that both film and intraparticle diffusion were significant.The hydrolytic activity of the immobilized A@ZIF-L was initially tested using BSA as a substrate.A diffusion-reaction model was developed and numerically solved to describe the reaction,with results confirming the presence of mass transfer limitations in the early stages of hydrolysis.The stability of the immobilized enzyme was demonstrated by retaining over 90%of its initial activity after being stored at 4℃ for 70 days.Furthermore,the immobilized A@ZIF-L was used to hy-drolyze protein extracts derived from Scenedesmus sp.microalgae.The bioactivity of the resulting protein hy-drolysates was characterized,showing a total phenolic content of 29.1±0.6 mg GAE g^(-1)and a radical scavenging activity of 82.75±2.20%.These findings highlight the potential of Alcalase-based biocatalysts for applications in the food industry.
文摘本文对碱性蛋白酶Alcalase AF 2.4L水解玉米蛋白的动力学特征进行了较为系统的研究:(1)探讨固液比、酶量、温度、pH值等因素对玉米蛋白水解度的影响,研究确定了碱性蛋白酶Alcalase AF 2.4L水解玉米蛋白的最佳工艺控制条件;(2)根据所建立的pH-stat酶解体系确定了Vmax和Km,为更有效地利用玉米蛋白资源奠定了理论基础。