Quantization noise caused by analog-to-digital converter(ADC)gives rise to the reliability performance degradation of communication systems.In this paper,a quantized non-Hermitian symmetry(NHS)orthogonal frequency-div...Quantization noise caused by analog-to-digital converter(ADC)gives rise to the reliability performance degradation of communication systems.In this paper,a quantized non-Hermitian symmetry(NHS)orthogonal frequency-division multiplexing-based visible light communication(OFDM-VLC)system is presented.In order to analyze the effect of the resolution of ADC on NHS OFDM-VLC,a quantized mathematical model of NHS OFDM-VLC is established.Based on the proposed quantized model,a closed-form bit error rate(BER)expression is derived.The theoretical analysis and simulation results both confirm the effectiveness of the obtained BER formula in high-resolution ADC.In addition,channel coding is helpful in compensating for the BER performance loss due to the utilization of lower resolution ADC.展开更多
With a low resolution 1-bit ADC on its receiver(RX) side, MIMO with 1-bit ADC took a considerable step in the fulfillment of the hardware complexity constrains of the internet of things(IoT) PHY layer design. However,...With a low resolution 1-bit ADC on its receiver(RX) side, MIMO with 1-bit ADC took a considerable step in the fulfillment of the hardware complexity constrains of the internet of things(IoT) PHY layer design. However, applying 1-bit ADC at MIMO RX results in severe nonlinear quantization error. By which, almost all received signal amplitude information is completely distorted. Thus, MIMO channel estimation is considered as a major barrier towards practical realization of 1-bit ADC MIMO system. In this paper, two efficient sparsity-based channel estimation techniques are proposed for 1-bit ADC MIMO systems, namely the low complexity sparsity-based channel estimation(LCSCE), and the iterative adaptive sparsity channel estimation(IASCE). In these techniques, the sparsity of the 1-bit ADC MIMO channel is exploited to propose a new adaptive and iterative compressive sensing(CS) recovery algorithm to handle the 1-bit ADC quantization effect. The proposed algorithms are tested with the state-of-the-art 1-bit ADC MIMO constant envelope modulation(MIMO-CEM). The 1-bit ADC MIMO-CEM system is chosen as it fulfills both energy and hardware complexity constraints of the IoT PHY layer. Simulation results reveal the high effectiveness of the proposed algorithms in terms of spectral efficiency(SE) and computational complexity. The proposed LCSCE reduces the computational complexity of the 1-bit ADC MIMO-CEM channel estimation by 86%, while the IASCE reduces it by 96% compared to the recent techniques of MIMO-CEM channel estimation. Moreover, the proposed LCSCE and IASCE improve the spectrum efficiency by 76 % and 73 %, respectively, compared to the recent techniques.展开更多
Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation sel...Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.展开更多
基金supported by the National Natural Science Foundation of China(No.62201508)the Zhejiang Provincial Natural Science Foundation of China(Nos.LZ21F010001 and LQ23F010004)the State Key Laboratory of Millimeter Waves of Southeast University,China(No.K202212).
文摘Quantization noise caused by analog-to-digital converter(ADC)gives rise to the reliability performance degradation of communication systems.In this paper,a quantized non-Hermitian symmetry(NHS)orthogonal frequency-division multiplexing-based visible light communication(OFDM-VLC)system is presented.In order to analyze the effect of the resolution of ADC on NHS OFDM-VLC,a quantized mathematical model of NHS OFDM-VLC is established.Based on the proposed quantized model,a closed-form bit error rate(BER)expression is derived.The theoretical analysis and simulation results both confirm the effectiveness of the obtained BER formula in high-resolution ADC.In addition,channel coding is helpful in compensating for the BER performance loss due to the utilization of lower resolution ADC.
文摘With a low resolution 1-bit ADC on its receiver(RX) side, MIMO with 1-bit ADC took a considerable step in the fulfillment of the hardware complexity constrains of the internet of things(IoT) PHY layer design. However, applying 1-bit ADC at MIMO RX results in severe nonlinear quantization error. By which, almost all received signal amplitude information is completely distorted. Thus, MIMO channel estimation is considered as a major barrier towards practical realization of 1-bit ADC MIMO system. In this paper, two efficient sparsity-based channel estimation techniques are proposed for 1-bit ADC MIMO systems, namely the low complexity sparsity-based channel estimation(LCSCE), and the iterative adaptive sparsity channel estimation(IASCE). In these techniques, the sparsity of the 1-bit ADC MIMO channel is exploited to propose a new adaptive and iterative compressive sensing(CS) recovery algorithm to handle the 1-bit ADC quantization effect. The proposed algorithms are tested with the state-of-the-art 1-bit ADC MIMO constant envelope modulation(MIMO-CEM). The 1-bit ADC MIMO-CEM system is chosen as it fulfills both energy and hardware complexity constraints of the IoT PHY layer. Simulation results reveal the high effectiveness of the proposed algorithms in terms of spectral efficiency(SE) and computational complexity. The proposed LCSCE reduces the computational complexity of the 1-bit ADC MIMO-CEM channel estimation by 86%, while the IASCE reduces it by 96% compared to the recent techniques of MIMO-CEM channel estimation. Moreover, the proposed LCSCE and IASCE improve the spectrum efficiency by 76 % and 73 %, respectively, compared to the recent techniques.
基金supported by the National Natural Science Foundation of China(72071111,71801127,71671091)the NSFC and the UK Royal Society joint project(71811530338)+2 种基金the Special Postdoctoral Fund of China(2019TQ0150)the Fundamental Research Funds for the Central Universities of China(NC2019003)the Intelligence Introduction Base of the Ministry of Science and Technology(G20190010178)。
文摘Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.