Ethylene plays an extensive role in plant growth and development.. 1-aminocyclopropane-1-carboxylate (ACC) oxidase (ACO) is the key enzyme in ethylene biosynthesis. In this study, a 354 g DNA and a 213 bp cDNA bas...Ethylene plays an extensive role in plant growth and development.. 1-aminocyclopropane-1-carboxylate (ACC) oxidase (ACO) is the key enzyme in ethylene biosynthesis. In this study, a 354 g DNA and a 213 bp cDNA base pair (bp) candidate fragment was amplified from pepper with primers derived from the ACO sequence (AJ011109) reported by Ernesto. The putative new gene was analyzed by bioinformatics tools.展开更多
In the present study, a full-length cDNA encoding 1-aminocyclopropane-1-carboxylic acid oxidase gene has been cloned from sugarcane (named GZ-ACO). Two primers were designed for coding the ORF in the full-length cDN...In the present study, a full-length cDNA encoding 1-aminocyclopropane-1-carboxylic acid oxidase gene has been cloned from sugarcane (named GZ-ACO). Two primers were designed for coding the ORF in the full-length cDNA of GZ-ACO gene from sugarcane. PCR amplification was performed with sugarcane DNA template, and a fragment of 1 104 bp (GZ34) was obtained. GZ34 was labeled with [α-32P] dCTP as the probe and used for hybridization after cloning and sequencing. Southern blotting analysis indicated that there were at least three other sequences, which weakly hybridized with the GZ34. Northern analysis showed that GZ34 was strongly induced by treatment with IAA, BA, ethephon, LiC1 and cold stress, respectively. As a contrast, the mRNA for ACO gene was at lower levels for both the light-grown and dark-grown plants without additional treatment. There were two transcripts in the dark-grown plants and three transcripts in the treatments with IAA, BA and cold stress, but there was only one transcript in ethephon treatment. It showed that GZ-ACO might be a gene connected with ethylene formation and take part in response to the induction of plant hormone and environmental stress.展开更多
Ethylene has been implicated as a sex-determining hormone in cucumber. Its exogenous application increases femaleness,and gynoecious genotypes were reported to produce more ethylene. 1-aminocyclopropane-1-carboxylate ...Ethylene has been implicated as a sex-determining hormone in cucumber. Its exogenous application increases femaleness,and gynoecious genotypes were reported to produce more ethylene. 1-aminocyclopropane-1-carboxylate (ACC) oxidase(ACO) is the key enzyme in ethylene biosynthesis. In this study, a 1200 base pair (bp) candidate fragment was amplifiedfrom the cucumber genome with degenerated primers derived from the ACO amino acid consensus sequence amongdifferent plant species. The coding region and its upstream (1 155 bp) were obtained by vector-mediated inverse PCR. Thenovel gene was analyzed by bioinformatics tools. Four exons and three introns were identified in the coding sequence.The spliced length of mRNA was 933 nucleotides (nts) and it encoded 311 amino acids. Phylogenic analysis result of thenew gene (CsACO4, GenBank accession number AY450356) was in accordance with the evolution relationship of geneticsamong various plant species. Northern blotting showed that the gene expressed among female flowers of gynoecious andmonoecious genotypes, it could not express in other organs. This implied that the gene might be correlated with the femalebehavior positively. Further work is on the way to demonstrate the complexity of the relationship between the endogenousethylene and the sex determination.展开更多
Many studies suggest that ethylene plays an important role in regulating metabolite synthesis. Dendrobium plants are traditional Chinese medicine and nowadays its medicinal components are known to be secondary metabol...Many studies suggest that ethylene plays an important role in regulating metabolite synthesis. Dendrobium plants are traditional Chinese medicine and nowadays its medicinal components are known to be secondary metabolites. In present study, a homolog of ACC oxidase (ACO) gene was isolated from flowers of Dendrobium officinale Kimura et Migo by PCR-method. The obtained cDNA of DoACO is 970 bp long and contains an open reading frame (ORP) encoding a protein with 314 amino acid residues. The DoACO shows high identity to its homologues from other plant species, that has 94.8% closest amino acid sequence of related protein with the ACO from Dendrobium hybrid cultivar. The putative ORP of the obtained sequence could encode a proper protein in respect of molecular weight under T -Lac promoter in E. coli.展开更多
Sex determination in plants gives rise to unisexual flowers that facilitate outcrossing and enhance genetic diversity. In cucumber and melon, ethylene promotes carpel development and arrests sta- men development. Five...Sex determination in plants gives rise to unisexual flowers that facilitate outcrossing and enhance genetic diversity. In cucumber and melon, ethylene promotes carpel development and arrests sta- men development. Five sex-determination genes have been identified, including four encoding 1-aminocyclopropane-l-carboxylate (ACC) synthase that catalyzes the rate-limiting step in ethylene biosynthesis, and a transcription factor gene CmWIP1 that corresponds to the Mendelian locus gynoecious in melon and is a negative regulator of femaleness. ACC oxidase (ACO) converts ACC into ethylene; how- ever, it remains elusive which ACO gene in the cucumber genome is critical for sex determination and how CmWIP1 represses development of female flowers. In this study, we discovered that mutation in an ACO gene, CsAC02, confers androecy in cucumber that bears only male flowers. The mutation disrupts the enzymatic activity of CsAC02, resulting in 50% less ethylene emission from shoot tips. CsAC02 was ex- pressed in the carpel primordia and its expression overlapped with that of CsACS11 in female flowers at key stages for sex determination, presumably providing sufficient ethylene required for proper CsACS2 expression. CmAC03, the ortholog of CsACO2, showed a similar expression pattern in the carpel region, suggesting a conserved function of CsACO2/CmACO3. We demonstrated that CsWlP1, the ortholog of CmWlP1, could directly bind the promoter of CsAC02 and repress its expression. Taken together, we propose a presumably conserved regulatory module consisting of WlP1 transcription factor and ACO controls unisexual flower development in cucumber and melon.展开更多
Influences of propylene treatment on fruit softening and ethylene biosynthesis of persimmon genotype, 'Hiratanenashi' were investigated. The treatment with propylene could accelerate the softening and enhance ...Influences of propylene treatment on fruit softening and ethylene biosynthesis of persimmon genotype, 'Hiratanenashi' were investigated. The treatment with propylene could accelerate the softening and enhance ethylene biosynthesis, with higher sensitivity of immature fruit to the propylene was consistent with mRNA increase derived from transcription of ACS and ACO genes. Furthermore, ethylene synthesis increase in immature fruits was controlled and regulated mainly by DK-ACS1, DK-ACS2, DK-ACO1 and DK-ACO2, but regulated only by DK-ACS1 and DK-ACO1 in mature fruits.展开更多
Allelochemicals represent a class of natural products released by plants as root,leaf,and fruit exudates that interfere with the growth and survival of neighboring plants.Understanding how allelochemicals function to ...Allelochemicals represent a class of natural products released by plants as root,leaf,and fruit exudates that interfere with the growth and survival of neighboring plants.Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function.One such allelochemical,Myrigalone A(MyA)produced by Myrica gale,inhibits seed germination and seedling growth through an unknown mechanism.Here,we investigate MyA using the tractable modelDictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylenesynthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase(ACO).Furthermore,in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket.In D.discoideum,ablation of ACO mimics the MyA-dependent developmental delay,which is partially restored by exogenous ethylene,and MyA reduces ethylene production.In Arabidopsis thaliana,MyA treatment delays seed germination,and this effect is rescued by exogenous ethylene.It also mimics the effect of established ACO inhibitors on root and hypocotyl extension,blocks ethylenedependent root hair production,and reduces ethylene production.Finally,in silico binding analyses identify a rangeof highlypotentethylene inhibitorsthatblock ethylene-dependent responseand reduce ethyleneproduction in Arabidopsis.Thus,we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.展开更多
Two principal growth regulators,cytokinins and ethylene,are known to interact in the regulation of plant growth.However,information about the underlying molecular mechanism and positional specificity of cytokinin/ethy...Two principal growth regulators,cytokinins and ethylene,are known to interact in the regulation of plant growth.However,information about the underlying molecular mechanism and positional specificity of cytokinin/ethylene crosstalk in the control of root growth is scarce.We have identified the spatial specificity of cytokinin-regulated root elongation and root apical meristem(RAM)size,both of which we demonstrate to be dependent on ethylene biosynthesis.Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE(IPT)in proximal and peripheral tissues leads to both root and RAM shortening.By contrast,IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to that of mock-treated controls.We show that cytokinins regulate two steps specific to ethylene biosynthesis:production of the ethylene precursor 1-aminocyclopropane-1-carboxylate(ACC)by ACC SYNTHASEs(ACSs)and its conversion to ethylene by ACC OXIDASEs(ACOs).We describe cytokinin-and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes.Using direct ethylene measurements,we identify ACO2,ACO3,and ACO4 as being responsible for ethylene biosynthesis and ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis.Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2(ARR2),a member of the multistep phosphorelay cascade,and the C-terminal portion of ETHYLENE INSENSITIVE 2(EIN2-C),a key regulator of canonical ethylene signaling,is involved in the cytokinin-induced,ethylene-mediated control of ACO4.We propose tight cooperation between cytokinin and ethylene signaling in the spatially specific regulation of ethylene biosynthesis as a key aspect of the hormonal control of root growth.展开更多
文摘Ethylene plays an extensive role in plant growth and development.. 1-aminocyclopropane-1-carboxylate (ACC) oxidase (ACO) is the key enzyme in ethylene biosynthesis. In this study, a 354 g DNA and a 213 bp cDNA base pair (bp) candidate fragment was amplified from pepper with primers derived from the ACO sequence (AJ011109) reported by Ernesto. The putative new gene was analyzed by bioinformatics tools.
基金the National Natural Science Foundation of China(39860039).
文摘In the present study, a full-length cDNA encoding 1-aminocyclopropane-1-carboxylic acid oxidase gene has been cloned from sugarcane (named GZ-ACO). Two primers were designed for coding the ORF in the full-length cDNA of GZ-ACO gene from sugarcane. PCR amplification was performed with sugarcane DNA template, and a fragment of 1 104 bp (GZ34) was obtained. GZ34 was labeled with [α-32P] dCTP as the probe and used for hybridization after cloning and sequencing. Southern blotting analysis indicated that there were at least three other sequences, which weakly hybridized with the GZ34. Northern analysis showed that GZ34 was strongly induced by treatment with IAA, BA, ethephon, LiC1 and cold stress, respectively. As a contrast, the mRNA for ACO gene was at lower levels for both the light-grown and dark-grown plants without additional treatment. There were two transcripts in the dark-grown plants and three transcripts in the treatments with IAA, BA and cold stress, but there was only one transcript in ethephon treatment. It showed that GZ-ACO might be a gene connected with ethylene formation and take part in response to the induction of plant hormone and environmental stress.
基金supported by the National Natural Science Foundation of China(39770521,39200079)
文摘Ethylene has been implicated as a sex-determining hormone in cucumber. Its exogenous application increases femaleness,and gynoecious genotypes were reported to produce more ethylene. 1-aminocyclopropane-1-carboxylate (ACC) oxidase(ACO) is the key enzyme in ethylene biosynthesis. In this study, a 1200 base pair (bp) candidate fragment was amplifiedfrom the cucumber genome with degenerated primers derived from the ACO amino acid consensus sequence amongdifferent plant species. The coding region and its upstream (1 155 bp) were obtained by vector-mediated inverse PCR. Thenovel gene was analyzed by bioinformatics tools. Four exons and three introns were identified in the coding sequence.The spliced length of mRNA was 933 nucleotides (nts) and it encoded 311 amino acids. Phylogenic analysis result of thenew gene (CsACO4, GenBank accession number AY450356) was in accordance with the evolution relationship of geneticsamong various plant species. Northern blotting showed that the gene expressed among female flowers of gynoecious andmonoecious genotypes, it could not express in other organs. This implied that the gene might be correlated with the femalebehavior positively. Further work is on the way to demonstrate the complexity of the relationship between the endogenousethylene and the sex determination.
文摘Many studies suggest that ethylene plays an important role in regulating metabolite synthesis. Dendrobium plants are traditional Chinese medicine and nowadays its medicinal components are known to be secondary metabolites. In present study, a homolog of ACC oxidase (ACO) gene was isolated from flowers of Dendrobium officinale Kimura et Migo by PCR-method. The obtained cDNA of DoACO is 970 bp long and contains an open reading frame (ORP) encoding a protein with 314 amino acid residues. The DoACO shows high identity to its homologues from other plant species, that has 94.8% closest amino acid sequence of related protein with the ACO from Dendrobium hybrid cultivar. The putative ORP of the obtained sequence could encode a proper protein in respect of molecular weight under T -Lac promoter in E. coli.
文摘Sex determination in plants gives rise to unisexual flowers that facilitate outcrossing and enhance genetic diversity. In cucumber and melon, ethylene promotes carpel development and arrests sta- men development. Five sex-determination genes have been identified, including four encoding 1-aminocyclopropane-l-carboxylate (ACC) synthase that catalyzes the rate-limiting step in ethylene biosynthesis, and a transcription factor gene CmWIP1 that corresponds to the Mendelian locus gynoecious in melon and is a negative regulator of femaleness. ACC oxidase (ACO) converts ACC into ethylene; how- ever, it remains elusive which ACO gene in the cucumber genome is critical for sex determination and how CmWIP1 represses development of female flowers. In this study, we discovered that mutation in an ACO gene, CsAC02, confers androecy in cucumber that bears only male flowers. The mutation disrupts the enzymatic activity of CsAC02, resulting in 50% less ethylene emission from shoot tips. CsAC02 was ex- pressed in the carpel primordia and its expression overlapped with that of CsACS11 in female flowers at key stages for sex determination, presumably providing sufficient ethylene required for proper CsACS2 expression. CmAC03, the ortholog of CsACO2, showed a similar expression pattern in the carpel region, suggesting a conserved function of CsACO2/CmACO3. We demonstrated that CsWlP1, the ortholog of CmWlP1, could directly bind the promoter of CsAC02 and repress its expression. Taken together, we propose a presumably conserved regulatory module consisting of WlP1 transcription factor and ACO controls unisexual flower development in cucumber and melon.
基金funded by the National Natural Science Foundation of China(30170662).
文摘Influences of propylene treatment on fruit softening and ethylene biosynthesis of persimmon genotype, 'Hiratanenashi' were investigated. The treatment with propylene could accelerate the softening and enhance ethylene biosynthesis, with higher sensitivity of immature fruit to the propylene was consistent with mRNA increase derived from transcription of ACS and ACO genes. Furthermore, ethylene synthesis increase in immature fruits was controlled and regulated mainly by DK-ACS1, DK-ACS2, DK-ACO1 and DK-ACO2, but regulated only by DK-ACS1 and DK-ACO1 in mature fruits.
基金supported by a PhD studentship funded by BBSRC DTP iCASE in collaboration with Syngenta Ltd.The CRISPR plasmids were kindly supplied by Dr.Yoichiro Kamimura,RIKEN Cell Signaling Dynamics Team,Center for Biosystems Dynamics Research,RIKEN(G90426).
文摘Allelochemicals represent a class of natural products released by plants as root,leaf,and fruit exudates that interfere with the growth and survival of neighboring plants.Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function.One such allelochemical,Myrigalone A(MyA)produced by Myrica gale,inhibits seed germination and seedling growth through an unknown mechanism.Here,we investigate MyA using the tractable modelDictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylenesynthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase(ACO).Furthermore,in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket.In D.discoideum,ablation of ACO mimics the MyA-dependent developmental delay,which is partially restored by exogenous ethylene,and MyA reduces ethylene production.In Arabidopsis thaliana,MyA treatment delays seed germination,and this effect is rescued by exogenous ethylene.It also mimics the effect of established ACO inhibitors on root and hypocotyl extension,blocks ethylenedependent root hair production,and reduces ethylene production.Finally,in silico binding analyses identify a rangeof highlypotentethylene inhibitorsthatblock ethylene-dependent responseand reduce ethyleneproduction in Arabidopsis.Thus,we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.
基金Ministry of Education,Youth and Sports of the Czech Republic under the projects TANGENC(CZ.02.01.01/00/22_008/0004581)and LUAUS24277German Research Foundation(CRC 1101 project D02)+1 种基金Howard Hughes Medical Institute(to E.M.M.)Russian Science Foundation(20-14-00140).
文摘Two principal growth regulators,cytokinins and ethylene,are known to interact in the regulation of plant growth.However,information about the underlying molecular mechanism and positional specificity of cytokinin/ethylene crosstalk in the control of root growth is scarce.We have identified the spatial specificity of cytokinin-regulated root elongation and root apical meristem(RAM)size,both of which we demonstrate to be dependent on ethylene biosynthesis.Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE(IPT)in proximal and peripheral tissues leads to both root and RAM shortening.By contrast,IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to that of mock-treated controls.We show that cytokinins regulate two steps specific to ethylene biosynthesis:production of the ethylene precursor 1-aminocyclopropane-1-carboxylate(ACC)by ACC SYNTHASEs(ACSs)and its conversion to ethylene by ACC OXIDASEs(ACOs).We describe cytokinin-and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes.Using direct ethylene measurements,we identify ACO2,ACO3,and ACO4 as being responsible for ethylene biosynthesis and ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis.Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2(ARR2),a member of the multistep phosphorelay cascade,and the C-terminal portion of ETHYLENE INSENSITIVE 2(EIN2-C),a key regulator of canonical ethylene signaling,is involved in the cytokinin-induced,ethylene-mediated control of ACO4.We propose tight cooperation between cytokinin and ethylene signaling in the spatially specific regulation of ethylene biosynthesis as a key aspect of the hormonal control of root growth.