Two full-scale systems operated in parallel, a conventional A2/O system consisting of anaerobic, anoxic and oxic compartments in succession and an inverted system consisting of anoxic, anaerobic and oxic compartments ...Two full-scale systems operated in parallel, a conventional A2/O system consisting of anaerobic, anoxic and oxic compartments in succession and an inverted system consisting of anoxic, anaerobic and oxic compartments without internal recycle, were compared in terms of their phosphorus removal performance, with an emphasis on phosphate (P) release behaviors, using both operational data and simulation results. The inverted system exhibited better long-term phosphorus removal performance (0.2 ± 0.3 vs. 0.7 ±0.7 mg/L), which should be attributed to the higher P release rate (0.79 vs. 0.60 kg P/(kg MLSS.day)) in the non-aerated compartments. The P release occurred in both the anoxic and anaerobic compartments of the inverted system, resulting in more efficient P release. Although the abundances of the 'Candidatus Accumulibacter phosphatis' population in the two systems were quite similar ((19.1 + 3.27)% and (18.4 + 4.15)% of the total microbe (DAPI stained particles) population in the inverted and conventional systems, respectively, by fluorescence in situ hybridization (FISH)), the high-concentration DAPI staining results show that the abundances of the whole polyphosphate accumulating organisms (PAOs) in the aerobic ends were quite different (the average ratios of the poly-P granules to total microbes (DAPI stained particles) were (45 ±4.18)% and (35 ± 5.39)%, respectively). Both the operational data and simulation results showed that the inverted system retained more abundant PAO populations due to its special configuration, which permitted efficient P release in the non-aerated compartment and better P removal,展开更多
Manganese ion(Mn^(2+))was generated from metallurgical,steel making and chemical industries.It could affect microbial activity and community structure after entering sewage treatment plant.The effect of Mn^(2+)on the ...Manganese ion(Mn^(2+))was generated from metallurgical,steel making and chemical industries.It could affect microbial activity and community structure after entering sewage treatment plant.The effect of Mn^(2+)on the pollutant removal,metal distribution patterns and composition of microbial communities were investigated in a an anaerobic/anoxic/oxic(A^(2)O)process.The results showed that when Mn^(2+)concentration was 5 mg/L,the efficiencies for the removal of chemical oxygen demand(COD),total nitrogen(TN)and total phosphorus(TP)attained remarkable levels of 96%,93%,and 99%,respectively.In the sludge,the distribution pattern of Mn^(2+)concentration was tightly bound extracellular polymeric substances(TB-EPS)>supernatant>loosely bound EPS(LB-EPS)>soluble microbial products(SMP).Mn^(2+)was found to enrich and accumulate in the microorganism cells.In addition,Mn^(2+)was mainly found in residual fractions and reducible fractions of pellet that manganese was present.The pellet was discovered to contain a substantial quantity of manganese,which was present in various oxidation states,including Mn^(4+),Mn^(3+)and Mn^(2+).The escalating levels of Mn^(2+)led to a reduction in the richness and diversity of microbial communities inhabiting various regions of the A^(2)O reactor.Nonetheless,the uniformity experienced only subtle alterations.Proteobacteria and Bacteroidetes emerged as the leading phyla within the microbial ecosystem,experiencing a steady rise in their respective proportions.The dominant bacterial groups,Azospira and Dechromonas,experienced an incremental increase in their relative prevalence,which played a constructive role in the process of pollutant removal.展开更多
A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (D...A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A2O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition, nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A2O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation.展开更多
基金supported by the National Natural Science Foundation of China (No. 20921140094)the Knowledge Innovation Project of Chinese Academy of Sciences(No. KSCX2-YW-G-054)
文摘Two full-scale systems operated in parallel, a conventional A2/O system consisting of anaerobic, anoxic and oxic compartments in succession and an inverted system consisting of anoxic, anaerobic and oxic compartments without internal recycle, were compared in terms of their phosphorus removal performance, with an emphasis on phosphate (P) release behaviors, using both operational data and simulation results. The inverted system exhibited better long-term phosphorus removal performance (0.2 ± 0.3 vs. 0.7 ±0.7 mg/L), which should be attributed to the higher P release rate (0.79 vs. 0.60 kg P/(kg MLSS.day)) in the non-aerated compartments. The P release occurred in both the anoxic and anaerobic compartments of the inverted system, resulting in more efficient P release. Although the abundances of the 'Candidatus Accumulibacter phosphatis' population in the two systems were quite similar ((19.1 + 3.27)% and (18.4 + 4.15)% of the total microbe (DAPI stained particles) population in the inverted and conventional systems, respectively, by fluorescence in situ hybridization (FISH)), the high-concentration DAPI staining results show that the abundances of the whole polyphosphate accumulating organisms (PAOs) in the aerobic ends were quite different (the average ratios of the poly-P granules to total microbes (DAPI stained particles) were (45 ±4.18)% and (35 ± 5.39)%, respectively). Both the operational data and simulation results showed that the inverted system retained more abundant PAO populations due to its special configuration, which permitted efficient P release in the non-aerated compartment and better P removal,
基金supported by Jilin Provincial Department of Education Science and Technology Project(No.JJKH20230152KJ)the Doctoral Research Initiation Fund(No.BSJXM-2022215).
文摘Manganese ion(Mn^(2+))was generated from metallurgical,steel making and chemical industries.It could affect microbial activity and community structure after entering sewage treatment plant.The effect of Mn^(2+)on the pollutant removal,metal distribution patterns and composition of microbial communities were investigated in a an anaerobic/anoxic/oxic(A^(2)O)process.The results showed that when Mn^(2+)concentration was 5 mg/L,the efficiencies for the removal of chemical oxygen demand(COD),total nitrogen(TN)and total phosphorus(TP)attained remarkable levels of 96%,93%,and 99%,respectively.In the sludge,the distribution pattern of Mn^(2+)concentration was tightly bound extracellular polymeric substances(TB-EPS)>supernatant>loosely bound EPS(LB-EPS)>soluble microbial products(SMP).Mn^(2+)was found to enrich and accumulate in the microorganism cells.In addition,Mn^(2+)was mainly found in residual fractions and reducible fractions of pellet that manganese was present.The pellet was discovered to contain a substantial quantity of manganese,which was present in various oxidation states,including Mn^(4+),Mn^(3+)and Mn^(2+).The escalating levels of Mn^(2+)led to a reduction in the richness and diversity of microbial communities inhabiting various regions of the A^(2)O reactor.Nonetheless,the uniformity experienced only subtle alterations.Proteobacteria and Bacteroidetes emerged as the leading phyla within the microbial ecosystem,experiencing a steady rise in their respective proportions.The dominant bacterial groups,Azospira and Dechromonas,experienced an incremental increase in their relative prevalence,which played a constructive role in the process of pollutant removal.
基金Supported by Key Technology Research and Development Program of the Tenthfive-year plan (2001BA610A-09), the NationalNatural Science Foundation of China (No. 50478040) and 863 Hi-Technology Research and Development Program of China(No.2004AA601020)
文摘A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A2O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition, nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A2O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation.