Although scientific and policy bodies have stated that nanomaterials are not intrinsically toxic, there is interest in evaluating if and how many engineered nanomaterials may do harm to the health of mankind and the e...Although scientific and policy bodies have stated that nanomaterials are not intrinsically toxic, there is interest in evaluating if and how many engineered nanomaterials may do harm to the health of mankind and the ecological environment. The interaction between nano-TiO2 and bovine serum albumin (BSA) was studied by using TDFS and UV methods in this research.展开更多
Recently, the high pressure study on the TiO_2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO_2 with nanoscale sizes. In this paper, we br...Recently, the high pressure study on the TiO_2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO_2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO_2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO_2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO_2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets,and nanoporous materials, and pressure-induced amorphization(PIA) and polyamorphism in ultrafine nanoparticles and TiO_2-B nanoribbons. Various TiO_2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO_2 nanoribbons, α-PbO_2-type TiO_2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO_2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO_2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications.展开更多
The syntheis of diphenyletylane with xylol and styrene as reactants and solid superacid SO42-/TiO2 doped rare-earth metal ion La3+ as a catalyst was reported.The results showed that the optimal conditions were using 1...The syntheis of diphenyletylane with xylol and styrene as reactants and solid superacid SO42-/TiO2 doped rare-earth metal ion La3+ as a catalyst was reported.The results showed that the optimal conditions were using 1% of catalyst with the molar ration of xylol to styrene being 7.5:1,at temperature of 140℃ for 3 h;The yield of diphenylethylane under such conditions was about 97.5%.展开更多
基金Suppoted by National Nature Science Foundation of China (Grant Nos. 41130746, 41272371)the Doctor Foundation of SWUST of China (Grant No. 11zx7139)
文摘Although scientific and policy bodies have stated that nanomaterials are not intrinsically toxic, there is interest in evaluating if and how many engineered nanomaterials may do harm to the health of mankind and the ecological environment. The interaction between nano-TiO2 and bovine serum albumin (BSA) was studied by using TDFS and UV methods in this research.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB808200)the National Natural Science Foundation of China(Grant Nos.11374120,11004075,10979001,51025206,51032001,and 21073071)the Cheung Kong Scholars Programme of China
文摘Recently, the high pressure study on the TiO_2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO_2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO_2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO_2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO_2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets,and nanoporous materials, and pressure-induced amorphization(PIA) and polyamorphism in ultrafine nanoparticles and TiO_2-B nanoribbons. Various TiO_2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO_2 nanoribbons, α-PbO_2-type TiO_2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO_2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO_2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications.
文摘The syntheis of diphenyletylane with xylol and styrene as reactants and solid superacid SO42-/TiO2 doped rare-earth metal ion La3+ as a catalyst was reported.The results showed that the optimal conditions were using 1% of catalyst with the molar ration of xylol to styrene being 7.5:1,at temperature of 140℃ for 3 h;The yield of diphenylethylane under such conditions was about 97.5%.