A computer simulation study on dynamics for the precipitation of δ'(Al_3Li) ordered particles from a disor- dered matrix (α) in binary Al-Li alloys is performed using the microscopic Langevin equation. A unique ...A computer simulation study on dynamics for the precipitation of δ'(Al_3Li) ordered particles from a disor- dered matrix (α) in binary Al-Li alloys is performed using the microscopic Langevin equation. A unique precipitation mechanism is found near the ordering spinodal line. Different from the classical nucleation mechanism in the me- tastable region and the congruent ordering followed by spinodal decomposition in the instable region, a nonstoichi- ometric single ordered phase with composition fluctuations is formed by non-classical nucleation, and this ordered phase decomposes spinodally. It can be concluded that the precipitation dynamics of δ' phase from metastability to instability is gradual, and no sharp transition occurs near the mean-field spinodal line as the mean-field theory pre- dicts.展开更多
Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation me...Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of226 mAh g^(-1) over 100 cycles at 0.1 C and excellent rate performance with discharge capacity of 96 mAh g-1 at 5.0 C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 ℃. It delivers a quite high discharge capacity of 233.7 mAh·g^(-1) at 1.0 C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances.展开更多
以柠檬酸为络合剂,聚乙二醇(PEG)为表面活性剂,偏钒酸铵、乙酸锰、磷酸二氢铵、氢氧化锂为原料,采用溶胶-凝胶法合成了xLiMnPO4·y Li3V2(PO4)3锂离子电池复合正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)对其晶体结构和微观形貌...以柠檬酸为络合剂,聚乙二醇(PEG)为表面活性剂,偏钒酸铵、乙酸锰、磷酸二氢铵、氢氧化锂为原料,采用溶胶-凝胶法合成了xLiMnPO4·y Li3V2(PO4)3锂离子电池复合正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)对其晶体结构和微观形貌进行表征,结果表明在700℃下烧结15 h合成的3LiMnPO4·Li3V2(PO4)3为结晶良好的两相结构,颗粒粒径相对较小且分布均匀。电化学性能研究表明,3LiMnPO4·Li3V2(PO4)3在室温0.2 C倍率下首次充放电容量分别为148.2 m Ah/g和141.5 m Ah/g,循环50次后放电容量为136.7 m Ah/g。展开更多
基金The project was financially supported by the National Science Foundation of China (59871039)
文摘A computer simulation study on dynamics for the precipitation of δ'(Al_3Li) ordered particles from a disor- dered matrix (α) in binary Al-Li alloys is performed using the microscopic Langevin equation. A unique precipitation mechanism is found near the ordering spinodal line. Different from the classical nucleation mechanism in the me- tastable region and the congruent ordering followed by spinodal decomposition in the instable region, a nonstoichi- ometric single ordered phase with composition fluctuations is formed by non-classical nucleation, and this ordered phase decomposes spinodally. It can be concluded that the precipitation dynamics of δ' phase from metastability to instability is gradual, and no sharp transition occurs near the mean-field spinodal line as the mean-field theory pre- dicts.
基金financially supported by the National Natural Science Foundation of China (No. 51372136)the NSFC-Guangdong United Fund (No. U1401246)
文摘Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of226 mAh g^(-1) over 100 cycles at 0.1 C and excellent rate performance with discharge capacity of 96 mAh g-1 at 5.0 C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 ℃. It delivers a quite high discharge capacity of 233.7 mAh·g^(-1) at 1.0 C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances.
文摘以柠檬酸为络合剂,聚乙二醇(PEG)为表面活性剂,偏钒酸铵、乙酸锰、磷酸二氢铵、氢氧化锂为原料,采用溶胶-凝胶法合成了xLiMnPO4·y Li3V2(PO4)3锂离子电池复合正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)对其晶体结构和微观形貌进行表征,结果表明在700℃下烧结15 h合成的3LiMnPO4·Li3V2(PO4)3为结晶良好的两相结构,颗粒粒径相对较小且分布均匀。电化学性能研究表明,3LiMnPO4·Li3V2(PO4)3在室温0.2 C倍率下首次充放电容量分别为148.2 m Ah/g和141.5 m Ah/g,循环50次后放电容量为136.7 m Ah/g。