Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in re...Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.展开更多
In this work, blast disruption and mitigation using 3D grids/perforated plates were tested for underbelly and side protection of vehicles. Two vehicle simulants were used: a small-scale one for side vehicle protection...In this work, blast disruption and mitigation using 3D grids/perforated plates were tested for underbelly and side protection of vehicles. Two vehicle simulants were used: a small-scale one for side vehicle protection assessment and a true-to-scale simulant for underbelly protection testing. The deformation of target plates was assessed. These were either unprotected or protected by three different types of disruptors. The first disruptor was made of a sandwich structure of two perforated plates filled with a thin aluminum structure allowing the air to pass through. The two other disruptors were made of pieces of cast metallic foam. Two different kinds of foams were used: one with large cells and the second one with small cells. Beforehand, the mitigation efficiency of the disruptors was evaluated using an explosivedriven shock tube(EDST). The experiments showed that blast disruption/mitigation by 3D grid/perforated plate structures was not suitable for vehicle side protection. However, 3D grids/perforated structures proved to be relatively effective for underbelly protection compared to an equivalent mass of steel.展开更多
In the framework of finite volume method(FVM),two modified schemes of quadratic upstream interpolation for convective kinematics(QUICK),namely quasi-QUICK(Q-QUICK) and normal quasi-QUICK(NQ-QUICK),for improving the pr...In the framework of finite volume method(FVM),two modified schemes of quadratic upstream interpolation for convective kinematics(QUICK),namely quasi-QUICK(Q-QUICK) and normal quasi-QUICK(NQ-QUICK),for improving the precision of convective flux approximation are verified in 3D unsteady advectiondiffusion equation of pollutants on unstructured grids.The constructed auxiliary nodes for Q-QUICK or NQQUICK are composed of two neighboring nodes plus the next upwind node;the later node is generated from intersection of the line of current neighboring nodes and their corresponding interfaces.The numerical results show that Q-QUICK and NQ-QUICK overwhelm central differencing scheme(CDS) in computational accuracy and behave similar numerical stability to upwind difference scheme(UDS),hybrid differencing scheme(HDS) and power difference scheme(PDS) after applying the deferred correction method.Their corresponding CPU time is approximately equivalent to that of traditional difference schemes.In addition,their abilities for adapting high grid deformation are robust.It is so promising to apply the suggested schemes to simulate pollutant transportation on arbitrary 3D natural boundary in the hydraulic or environmental engineering.展开更多
Acoustic-elastic coupled media is often encountered in most marine explorations, and accurate simulation of acoustic-elastic coupled media is of great significance. At present, the study of acoustic-elastic coupled me...Acoustic-elastic coupled media is often encountered in most marine explorations, and accurate simulation of acoustic-elastic coupled media is of great significance. At present, the study of acoustic-elastic coupled media still assumes that the solid of the acoustic-elastic coupled media is isotropic, but this assumption is not in accordance with the actual situation. In this paper, we derive the solid media of acoustic-elastic coupled media from isotropic media to anisotropic media, and propose an acoustic-elastic coupled medium based ontransverse isotropic media with vertical symmetric axes(VTI) to improve the accuracy of forward modeling. Based on the relationship between the Thomsen parameter and the coefficient matrix of the anisotropic elastic wave equation, we transform the Thomson parameter into a velocity model with anisotropic properties. We use a staggered grid finite difference method to simulate the propagation of a wavefield in a three-dimensional acoustic-elastic coupled media. We obtain the snapshots of the wave field when the solid of the acoustic-elastic coupled media is an isotropic medium and a VTI media. When the solid of the acoustic-elastic coupled media is considered VTI media, we can observe the qP wave and qS wave that cannot be observed in the isotropic medium from the wave field snapshot. We can also find that the seismic records obtained by the method we use are more realistic. The algorithm proposed in this paper is of great significance for high-precision ocean numerical simulation.展开更多
In this paper, we firstly derive the stability conditions of high-order staggered-grid schemes for the three-dimensional (3D) elastic wave equation in heterogeneous media based on the energy method. Moreover, the plan...In this paper, we firstly derive the stability conditions of high-order staggered-grid schemes for the three-dimensional (3D) elastic wave equation in heterogeneous media based on the energy method. Moreover, the plane wave analysis yields a sufficient and necessary stability condition by the von Neumann criterion in homogeneous case. Numerical computations for 3D wave simulation with point source excitation are given.展开更多
Unmanned Aerial Vehicle(UAV)swarm has become the inevitable trend of development,which will enjoy broad prospects to be applied in the future.However,the change of UAV application mode will certainly bring new technic...Unmanned Aerial Vehicle(UAV)swarm has become the inevitable trend of development,which will enjoy broad prospects to be applied in the future.However,the change of UAV application mode will certainly bring new technical challenges in the flight management,environmental perception,collaborative control as well as other fields.This paper considers that it can be an effective solution to realize the unified management of spatial information on the UAV platform by adopting the spatial grid model represented by the Geo SOT-3D,and to reduce the workload of flight management,airborne environmental perception,and ranging in the neighborhood through the association and query of all spatial grid data.展开更多
基金supported by the National Natural Science Foundation of China(No.52401221)Shandong Provincial Natural Science Foundation,China(No.ZR2022QE014)+1 种基金the Basic Scientific Research Fund for Central Universities(No.202112018)the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education)。
文摘Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.
基金the French Ministry of Defense for its financial support, in the frame of an official subsidy agreement (convention de subvention)。
文摘In this work, blast disruption and mitigation using 3D grids/perforated plates were tested for underbelly and side protection of vehicles. Two vehicle simulants were used: a small-scale one for side vehicle protection assessment and a true-to-scale simulant for underbelly protection testing. The deformation of target plates was assessed. These were either unprotected or protected by three different types of disruptors. The first disruptor was made of a sandwich structure of two perforated plates filled with a thin aluminum structure allowing the air to pass through. The two other disruptors were made of pieces of cast metallic foam. Two different kinds of foams were used: one with large cells and the second one with small cells. Beforehand, the mitigation efficiency of the disruptors was evaluated using an explosivedriven shock tube(EDST). The experiments showed that blast disruption/mitigation by 3D grid/perforated plate structures was not suitable for vehicle side protection. However, 3D grids/perforated structures proved to be relatively effective for underbelly protection compared to an equivalent mass of steel.
基金the National Public Research Institutes for Basic Research and Development Operating Expenses Special Project (Nos.CKSF2010014/SL,YWF0905,CKSF2010011 and CKSF2012008/SL)the National Basic Research Program (973) of China(No.2007CB714106)
文摘In the framework of finite volume method(FVM),two modified schemes of quadratic upstream interpolation for convective kinematics(QUICK),namely quasi-QUICK(Q-QUICK) and normal quasi-QUICK(NQ-QUICK),for improving the precision of convective flux approximation are verified in 3D unsteady advectiondiffusion equation of pollutants on unstructured grids.The constructed auxiliary nodes for Q-QUICK or NQQUICK are composed of two neighboring nodes plus the next upwind node;the later node is generated from intersection of the line of current neighboring nodes and their corresponding interfaces.The numerical results show that Q-QUICK and NQ-QUICK overwhelm central differencing scheme(CDS) in computational accuracy and behave similar numerical stability to upwind difference scheme(UDS),hybrid differencing scheme(HDS) and power difference scheme(PDS) after applying the deferred correction method.Their corresponding CPU time is approximately equivalent to that of traditional difference schemes.In addition,their abilities for adapting high grid deformation are robust.It is so promising to apply the suggested schemes to simulate pollutant transportation on arbitrary 3D natural boundary in the hydraulic or environmental engineering.
基金Supported by Major Project of National Science and Technology of China(No.2016ZX05026-002-003)National Natural Science Foundation of China(No.41374108)
文摘Acoustic-elastic coupled media is often encountered in most marine explorations, and accurate simulation of acoustic-elastic coupled media is of great significance. At present, the study of acoustic-elastic coupled media still assumes that the solid of the acoustic-elastic coupled media is isotropic, but this assumption is not in accordance with the actual situation. In this paper, we derive the solid media of acoustic-elastic coupled media from isotropic media to anisotropic media, and propose an acoustic-elastic coupled medium based ontransverse isotropic media with vertical symmetric axes(VTI) to improve the accuracy of forward modeling. Based on the relationship between the Thomsen parameter and the coefficient matrix of the anisotropic elastic wave equation, we transform the Thomson parameter into a velocity model with anisotropic properties. We use a staggered grid finite difference method to simulate the propagation of a wavefield in a three-dimensional acoustic-elastic coupled media. We obtain the snapshots of the wave field when the solid of the acoustic-elastic coupled media is an isotropic medium and a VTI media. When the solid of the acoustic-elastic coupled media is considered VTI media, we can observe the qP wave and qS wave that cannot be observed in the isotropic medium from the wave field snapshot. We can also find that the seismic records obtained by the method we use are more realistic. The algorithm proposed in this paper is of great significance for high-precision ocean numerical simulation.
文摘In this paper, we firstly derive the stability conditions of high-order staggered-grid schemes for the three-dimensional (3D) elastic wave equation in heterogeneous media based on the energy method. Moreover, the plane wave analysis yields a sufficient and necessary stability condition by the von Neumann criterion in homogeneous case. Numerical computations for 3D wave simulation with point source excitation are given.
文摘Unmanned Aerial Vehicle(UAV)swarm has become the inevitable trend of development,which will enjoy broad prospects to be applied in the future.However,the change of UAV application mode will certainly bring new technical challenges in the flight management,environmental perception,collaborative control as well as other fields.This paper considers that it can be an effective solution to realize the unified management of spatial information on the UAV platform by adopting the spatial grid model represented by the Geo SOT-3D,and to reduce the workload of flight management,airborne environmental perception,and ranging in the neighborhood through the association and query of all spatial grid data.