Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV ...Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV contents (up to about 90 mol%) of PHBV could be produced by this strain. Combined nitrogen sources containing both yeast extract and ammonium sulphate were better for cell growth and polyhydroxyalkanoates (PHA) production than either yeast extract or ammonium sulphate alone. Propionic acid is more favorable for the production of HV content than that of valeric acid. Finally, thermal properties of PHBV produced by this strain are found close to the results of other groups.展开更多
Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a custo...Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a customized 3D printer via Fused Granular Manufacturing (FGM) approach modified with a Mahor screw extruder. To anticipate the behaviour of PHBVs when transformed using conventional thermo-mechanical shaping processes, thermal and mechanical analyses were carried out in order to better understand the effect of annealing temperature on their crystallization behaviour and mechanical properties of PHB polymer and PHBV copolymer. The objectives of the present work were to propose an experimental strategy to study the melting and crystallization events, crystalline structure changes, and mechanical performances of both PHB homopolymer and PHBV copolymer according to identical thermal annealing treatments. A monitoring of 3D printed PHB and PHBV structures was achieved by coupling Differential Scanning Calorimetry (DSC) and tensile tests. .展开更多
Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/Organophilic montmorillonite (PHBV/OMMT) nanocomposites were prepared and the biodegradability of the PHBV/OMMT nanocomposites was studied by a cultivation degrading metho...Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/Organophilic montmorillonite (PHBV/OMMT) nanocomposites were prepared and the biodegradability of the PHBV/OMMT nanocomposites was studied by a cultivation degrading method in soil suspension. The relationship between structure and biodegradability of PHBV/OMMT nanocomposites was investigated. The results showed that the biodegradability of PHBV/OMMT nanocomposites decreased with increasing amount of OMMT and it was related to the number of PHBV degrading microorganisms in degradation environment, the anti-microbial property of OMMT and the degree of crystallinity of the nanocomposites.展开更多
The biodegradable polymer demonstrates significant potential for addressing the critical environmental challenges associated with oil spills;however, the cellular film structure and hydrophobic characteristics of the ...The biodegradable polymer demonstrates significant potential for addressing the critical environmental challenges associated with oil spills;however, the cellular film structure and hydrophobic characteristics of the polymer restrict their efficacy. In this study, a biodegradable thin membrane composed of a blend of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(caprolactone) (PCL) was fabricated utilizing the electrospinning technique. The membrane exhibited an adsorption capacity for cooking oil of 10.8 g/g, and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the anticipated chemical structures, revealing no evidence of chemical interactions between PHBV and PCL. This research presents an environmentally friendly and straightforward approach for fabricating biodegradable membrane structure with exceptional oil-water separation capabilities.展开更多
The feeding method of propionic acid for production ofpoly(3-hydroxybutyrate-co-3-hydro xyvalerate) [P(3HB-co-3HV)] by fed-batch culture of Ralstoniaeutropha was optimized to achieve high cell density and high 3HV yie...The feeding method of propionic acid for production ofpoly(3-hydroxybutyrate-co-3-hydro xyvalerate) [P(3HB-co-3HV)] by fed-batch culture of Ralstoniaeutropha was optimized to achieve high cell density and high 3HV yield. Effects of different feedingstrategies of propionic acid on the production of P(3HB-co-3HV) were investigated. A decline ofspecific synthesis rate of copolymer and the yield of 3HV unit from propionic acid were observed dueto the propionic acid accumulation in culture broth when the feeding solution with highP/G(propionic acid to glucose) ratio was employed. It was further confirmed by controlling propionicacid concentration at a low level in the separate feeding of propionic acid. An optimal feedingstrategy was demonstrated to reduce the propionic acid accumulation. The cell concentration,P(3HB-co-3HV) productivity and 3HV unit fraction reached to 163.9kg·m^(-3), 1.8kg·m^(-3)·h^(-1),and 10.6%(by mass), respectively, resulting in a yield of 0.33g HV per g propionic acid.展开更多
背景:骨代谢紊乱会引起骨相关疾病的发生,而叉头框转录因子O3可以通过调节氧化应激、自噬水平等来影响骨组织细胞增殖、分化与凋亡,调控骨代谢过程。目的:系统性分析叉头框转录因子O3调控骨代谢及其在骨科疾病中作用机制的相关研究文献...背景:骨代谢紊乱会引起骨相关疾病的发生,而叉头框转录因子O3可以通过调节氧化应激、自噬水平等来影响骨组织细胞增殖、分化与凋亡,调控骨代谢过程。目的:系统性分析叉头框转录因子O3调控骨代谢及其在骨科疾病中作用机制的相关研究文献,为后续以叉头框转录因子O3为靶点治疗骨疾病的研究提供参考。方法:以“(SU=FoxO3a OR SU=Foxo3 OR SU=Forkhead box O3 OR SU=叉头框转录因子O3)AND SU=骨”为检索句在中国知网进行检索,以“主题:(“FoxO3a”)OR主题:(“Foxo3”)OR主题:(“Forkhead box O3”)OR主题:(“叉头框转录因子O3”)AND主题:(“骨”)”为检索句在万方医学数据库进行检索;以“((FoxO3a)OR(Foxo3)OR(Forkhead box O3))AND((bone)OR(Skeleton))”为检索句在PubMed数据库进行检索,排除陈旧、重复、质量较差以及不相关的文献,最终纳入56篇文献进行综述分析。结果与结论:①叉头框转录因子O3与骨髓间充质干细胞:叉头框转录因子O3能够促进成骨谱系的形成,还可通过激活自噬促进早期成骨分化。同时,叉头框转录因子O3在骨髓间充质干细胞中体现抗氧化特性,保护细胞免受氧化应激诱导的衰老。②叉头框转录因子O3与成骨细胞:叉头框转录因子O3在成骨细胞中能通过干扰Wnt/β-连环蛋白通路抑制成骨,同时能激活抗氧化酶保护成熟成骨细胞。叉头框转录因子O3能促进成骨祖细胞的增殖,并通过激活自噬促进成骨分化。③叉头框转录因子O3与破骨细胞:叉头框转录因子O3表达可抵抗氧化应激和激活自噬抑制破骨细胞生成。④叉头框转录因子O3与骨细胞:叉头框转录因子O3可通过抗氧化作用保护骨细胞,还可通过抑制p16和p53信号通路和抑制衰老相关分泌表型来减少骨流失。⑤叉头框转录因子O3与软骨细胞:叉头框转录因子O3在骨关节炎中对软骨细胞起到保护作用,抑制软骨细胞分解或凋亡,促进软骨细胞外基质合成,可抑制软骨细胞肥大;然而,叉头框转录因子O3与Runt相关转录因子1在软骨细胞中高度共表达却会促进软骨祖细胞的早期软骨形成和终末肥大。⑥叉头框转录因子O3通过参与氧化应激抵抗与调控自噬等过程影响骨代谢,参与多类骨相关疾病的病理进程。展开更多
基金This work was financially supported by the Hong Kong Polytechnic University (Grant YD37)the Research Grant Council of the Hong Kong Special Administration Region, China (Nos. Polyu5272/01M, Polyu5257/02M, Polyu5403/03M)
文摘Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV contents (up to about 90 mol%) of PHBV could be produced by this strain. Combined nitrogen sources containing both yeast extract and ammonium sulphate were better for cell growth and polyhydroxyalkanoates (PHA) production than either yeast extract or ammonium sulphate alone. Propionic acid is more favorable for the production of HV content than that of valeric acid. Finally, thermal properties of PHBV produced by this strain are found close to the results of other groups.
文摘Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a customized 3D printer via Fused Granular Manufacturing (FGM) approach modified with a Mahor screw extruder. To anticipate the behaviour of PHBVs when transformed using conventional thermo-mechanical shaping processes, thermal and mechanical analyses were carried out in order to better understand the effect of annealing temperature on their crystallization behaviour and mechanical properties of PHB polymer and PHBV copolymer. The objectives of the present work were to propose an experimental strategy to study the melting and crystallization events, crystalline structure changes, and mechanical performances of both PHB homopolymer and PHBV copolymer according to identical thermal annealing treatments. A monitoring of 3D printed PHB and PHBV structures was achieved by coupling Differential Scanning Calorimetry (DSC) and tensile tests. .
基金The National Natural Science Foundation of China (No. 20374032) Chinese Education Ministry Foundation for N & T Joint Academy
文摘Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/Organophilic montmorillonite (PHBV/OMMT) nanocomposites were prepared and the biodegradability of the PHBV/OMMT nanocomposites was studied by a cultivation degrading method in soil suspension. The relationship between structure and biodegradability of PHBV/OMMT nanocomposites was investigated. The results showed that the biodegradability of PHBV/OMMT nanocomposites decreased with increasing amount of OMMT and it was related to the number of PHBV degrading microorganisms in degradation environment, the anti-microbial property of OMMT and the degree of crystallinity of the nanocomposites.
文摘The biodegradable polymer demonstrates significant potential for addressing the critical environmental challenges associated with oil spills;however, the cellular film structure and hydrophobic characteristics of the polymer restrict their efficacy. In this study, a biodegradable thin membrane composed of a blend of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(caprolactone) (PCL) was fabricated utilizing the electrospinning technique. The membrane exhibited an adsorption capacity for cooking oil of 10.8 g/g, and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the anticipated chemical structures, revealing no evidence of chemical interactions between PHBV and PCL. This research presents an environmentally friendly and straightforward approach for fabricating biodegradable membrane structure with exceptional oil-water separation capabilities.
文摘The feeding method of propionic acid for production ofpoly(3-hydroxybutyrate-co-3-hydro xyvalerate) [P(3HB-co-3HV)] by fed-batch culture of Ralstoniaeutropha was optimized to achieve high cell density and high 3HV yield. Effects of different feedingstrategies of propionic acid on the production of P(3HB-co-3HV) were investigated. A decline ofspecific synthesis rate of copolymer and the yield of 3HV unit from propionic acid were observed dueto the propionic acid accumulation in culture broth when the feeding solution with highP/G(propionic acid to glucose) ratio was employed. It was further confirmed by controlling propionicacid concentration at a low level in the separate feeding of propionic acid. An optimal feedingstrategy was demonstrated to reduce the propionic acid accumulation. The cell concentration,P(3HB-co-3HV) productivity and 3HV unit fraction reached to 163.9kg·m^(-3), 1.8kg·m^(-3)·h^(-1),and 10.6%(by mass), respectively, resulting in a yield of 0.33g HV per g propionic acid.
文摘背景:骨代谢紊乱会引起骨相关疾病的发生,而叉头框转录因子O3可以通过调节氧化应激、自噬水平等来影响骨组织细胞增殖、分化与凋亡,调控骨代谢过程。目的:系统性分析叉头框转录因子O3调控骨代谢及其在骨科疾病中作用机制的相关研究文献,为后续以叉头框转录因子O3为靶点治疗骨疾病的研究提供参考。方法:以“(SU=FoxO3a OR SU=Foxo3 OR SU=Forkhead box O3 OR SU=叉头框转录因子O3)AND SU=骨”为检索句在中国知网进行检索,以“主题:(“FoxO3a”)OR主题:(“Foxo3”)OR主题:(“Forkhead box O3”)OR主题:(“叉头框转录因子O3”)AND主题:(“骨”)”为检索句在万方医学数据库进行检索;以“((FoxO3a)OR(Foxo3)OR(Forkhead box O3))AND((bone)OR(Skeleton))”为检索句在PubMed数据库进行检索,排除陈旧、重复、质量较差以及不相关的文献,最终纳入56篇文献进行综述分析。结果与结论:①叉头框转录因子O3与骨髓间充质干细胞:叉头框转录因子O3能够促进成骨谱系的形成,还可通过激活自噬促进早期成骨分化。同时,叉头框转录因子O3在骨髓间充质干细胞中体现抗氧化特性,保护细胞免受氧化应激诱导的衰老。②叉头框转录因子O3与成骨细胞:叉头框转录因子O3在成骨细胞中能通过干扰Wnt/β-连环蛋白通路抑制成骨,同时能激活抗氧化酶保护成熟成骨细胞。叉头框转录因子O3能促进成骨祖细胞的增殖,并通过激活自噬促进成骨分化。③叉头框转录因子O3与破骨细胞:叉头框转录因子O3表达可抵抗氧化应激和激活自噬抑制破骨细胞生成。④叉头框转录因子O3与骨细胞:叉头框转录因子O3可通过抗氧化作用保护骨细胞,还可通过抑制p16和p53信号通路和抑制衰老相关分泌表型来减少骨流失。⑤叉头框转录因子O3与软骨细胞:叉头框转录因子O3在骨关节炎中对软骨细胞起到保护作用,抑制软骨细胞分解或凋亡,促进软骨细胞外基质合成,可抑制软骨细胞肥大;然而,叉头框转录因子O3与Runt相关转录因子1在软骨细胞中高度共表达却会促进软骨祖细胞的早期软骨形成和终末肥大。⑥叉头框转录因子O3通过参与氧化应激抵抗与调控自噬等过程影响骨代谢,参与多类骨相关疾病的病理进程。