A novel CF_3-containing building block, (Z)-ethyl 3-bromo-4,4,4-trifluoro-2-butenoate, was easily prepared from CF_3CBr_3, the former reacted with alkynes Or organozinc reagents in the presence of Pd complexes to affo...A novel CF_3-containing building block, (Z)-ethyl 3-bromo-4,4,4-trifluoro-2-butenoate, was easily prepared from CF_3CBr_3, the former reacted with alkynes Or organozinc reagents in the presence of Pd complexes to afford useful CF_3-containing intermediates in good yield.展开更多
The flux agents in common mould fluxes were fluoride and sodium oxide, which would do great harm to environments. B2O3 was selected as flux. The physical properties of B2O3-containing mould fluxes were studied. The co...The flux agents in common mould fluxes were fluoride and sodium oxide, which would do great harm to environments. B2O3 was selected as flux. The physical properties of B2O3-containing mould fluxes were studied. The corresponding physical properties of 37. 91% CAO-43.09% SiO2-5% Al2O3-5% MgO-2% Li20-7% B2O3 mould fluxes were as follows: the melting point was 909℃, the flowing temperature was 1 160℃, the viscosity and surface tension at 1300 ℃ were 0. 4 Pa · s and 0.32 N/m respectively, which could meet the demands for certain kinds of steels for mould fluxes in continuous casting.展开更多
Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 ...Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 content, the intensity of characteristic absorption peak is increased and the absorption peak is broadened. With increasing of the ratios of SiO2/B2O3 and Al2O3/SiO2, the broadening degree of absorption peak is increased. The experimental results provide basis for making special optical glasses which have the characteristics of high absorption for special wavelength laser and high transparence for visible light.展开更多
The Dissolving loss of Nd in the systems NdCl_3-MCl_n(M=Li,Na,K,Ca,Sr,Ba;n=1 or 2) and the NdCl_3-rich NdCl_3-LiF motlen salts,and in the system of NdCl_3-(90 wt% KCl,10 wt%MCl_n) was determined.It was found that the ...The Dissolving loss of Nd in the systems NdCl_3-MCl_n(M=Li,Na,K,Ca,Sr,Ba;n=1 or 2) and the NdCl_3-rich NdCl_3-LiF motlen salts,and in the system of NdCl_3-(90 wt% KCl,10 wt%MCl_n) was determined.It was found that the dissolving loss of Nd (B_(Nd)) in the NdCl_3-KCl,NdCl_3-CaCl_2 and NdCl_3-(90 wt%KCl,10 wt%CaCl_2) melts is rather insignificant.The dissolving loss of Nd in the NdCl_3-KCl system increases with temperature,yet it is only 1/3 of that in pure NdCl_3 when the content of NdCl_3 was less than 50 wt% in the mixture.Addition of LiF to NdCl_3 can diminish the dissolving loss of Nd.The nature of interaction between metallic Nd and its salts was also discussed.展开更多
The leaf is a major organ for photosynthesis,and its shape plays an important role in plant development and yield determination in rice(Oryza sativa L.).In this study,an adaxial curled leaf mutant,termed curly leaf 1-...The leaf is a major organ for photosynthesis,and its shape plays an important role in plant development and yield determination in rice(Oryza sativa L.).In this study,an adaxial curled leaf mutant,termed curly leaf 1-1(cul1-1),was obtained by chemical mutagenesis.The leaf rolling index of the cul1-1 mutant was higher than that of the wild-type,which was caused by the abnormal development of bulliform cells(BCs).We cloned the CUL1 gene by map-based cloning.A nonsense mutation was present in the cul1-1 mutant,converting a tryptophan codon into a stop codon.The CUL1 gene encodes a chromodomain,helicase/ATPase and DNA-binding domain containing protein.Genes related to leaf rolling and BC development,such as ADL1,REL1 and ROC5,were activated by the cul1-1 mutation.The trimethylation of lysine 27 in histone 3(H3K27me3),but not H3K4me3,at the ADL1,REL1 and ROC5 loci,was reduced in the cul1-1 mutant.High-throughput mRNA sequencing indicated that the cul1-1 mutation caused genome-wide differential gene expression.The differentially expressed genes were classified into a few gene ontology terms and Kyoto encyclopedia of genes and genomes pathways.In the natural population,22 missense genomic variations in the CUL1 locus were identified,which composed of 7 haplotypes.A haplotype network was also built with haplotype II as the ancestor.The findings revealed that CUL1 is essential for normal leaf development and regulates this process by inhibiting the expression of genes involved in leaf rolling and BC development.展开更多
Electrolyte additives are pivotal for stable cycling of rechargeable sodium-ion batteries(SIBs),which dictate the creation of the protective interface film on electrodes.Cyclic sulfur-containing additives,such as1,3,2...Electrolyte additives are pivotal for stable cycling of rechargeable sodium-ion batteries(SIBs),which dictate the creation of the protective interface film on electrodes.Cyclic sulfur-containing additives,such as1,3,2-dioxathiolane-2,2-dioxide(DTD),with the structure of sulfur surrounded by four oxygen atoms,have been proposed but less knowledge is available on the relationship between their molecular structures and interfacial stability.This work compares two similar molecule structure of cyclic sulfurcontaining additives,DTD and ethylene sulfite(ES),to investigate their effects on the electrochemical performance of NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM)||hard carbon(HC)pouch cells.Therein,ES with the structure of sulfur surrounded by three oxygen atoms,as electrolyte additive,is investigated in the SIBs for the first time.It is shown that adding 3.0%ES or 2.0%DTD(the optimal proportion)in the Control electrolyte(1 M NaPF_(6)in EC:EMC=3:7 with 5.0%FEC in weight)can improve cyclic stability and rate performance,respectively.Even under the high-temperature conditions,both ES and DTD exhibit good performance,but DTD is superior.Combinations of electrochemical methods,multi-spectroscopy,and theoretical calculations have been employed to evaluate and compare the effects of ES and DTD on sodium-ion battery.They reveal that ES and DTD can generate different content and composition by redox reaction on cathode and anode surface.The more and effective high-valence sulfur-containing components for DTD are the main reason to explain the better effect on DTD.This work shares new insights into the relationship between cyclic sulfur-containing additive molecule structure and electrolyte-electrode interface films effect,which fills the blanks of previous research.展开更多
A method to upgrade the iron grade in copper slag was proposed using lime to decompose Al_(2)O_(3)-containing fayalite melt(AFMT).Thermodynamic calculations indicated that adjusting the CaO/AFMT ratio can yield a resi...A method to upgrade the iron grade in copper slag was proposed using lime to decompose Al_(2)O_(3)-containing fayalite melt(AFMT).Thermodynamic calculations indicated that adjusting the CaO/AFMT ratio can yield a residual melt with a FeO concentration of 75−88 wt.%and produce Ca_(2)SiO_(4).In-situ observations suggested that the reaction was impeded in some way.Quenching experiments revealed that the initial reaction products consisted of calcium ferrite compounds and FeO−CaO melt.At the FeO−CaO melt/AFMT interface,Ca_(2)SiO_(4) particles precipitated,forming a dense Ca_(2)SiO_(4) film that significantly impeded mass transfer.Although trace amounts of Al_(2)O_(3) in AFMT temporarily enhanced mass transfer,they were insufficient to overcome this retardation effect.The decomposition reaction was far from achieving equilibrium,demonstrating a self-retardation effect.Measures must be implemented to eliminate this self-retardation effect and enhance the efficiency of reaction kinetics.展开更多
In the search for new drugs with more efficient active ingredients, various transition metals are being explored as potential metallopharmaceuticals. These compounds, which combine drugs with metals, have shown promis...In the search for new drugs with more efficient active ingredients, various transition metals are being explored as potential metallopharmaceuticals. These compounds, which combine drugs with metals, have shown promise as chemotherapeutic agents, akin to the accidental discovery of cisplatin and its organic derivatives in the late 20th century. This discovery transformed the sciences, particularly in the fields of organic and inorganic chemistry, by offering new insights into the compositions and molecular geometries of inorganic complexes through coordination chemistry, while also intersecting with other scientific domains such as pharmacology and medicine. To contribute to the development of new chemotherapeutic compounds through simple and reproducible synthetic processes, this study utilized rhodium(III) chloride hydrate (RhCl3.nH2O) to synthesize a series of compounds with the following organic N-heterocyclic ligands: 4,4'-dimethyl-2,2'-bipyridine, isonicotinamide, and N-(3-pyridyl)-isonicotinamide (3-pina). Two analytical techniques were employed to characterize the resulting materials: spectroscopic analysis in the infrared region, which suggested interactions and substitutions at the metal center by the organic compounds, and thermoanalytical analyses, which led to the proposal of minimum formulas for the compounds as follows: C1 [RhCl2(4,4'-Met-2,2'-bipy)2]Cl∙5/2H2O and C2 [Rh(4,4'-Met-2,2'-bipy)2(Iso)2] Cl3∙1/2H2O. However, the complexation of the third compound could not be confirmed due to the physicochemical characteristics of the resulting complex being very similar to those of the starting material, thereby validating the effectiveness of these techniques in differentiating and characterizing the synthesized salts. Due to their solubility in water and/or alcohol and thermal stability, the complexes were tested in biological media to assess cell viability in peripheral blood mononuclear cells. The solutions of these salts demonstrated favorable cell viability under the tested conditions, according to statistical analysis, obtaining average viability in the range of 95 ≤ x ≤ 100, with standard deviations between 3.29 ≤ x ≤ 4.44 for living cells.展开更多
Ammonia(NH_(3))emission has caused serious environment issues and aroused worldwide concern.The emerging ionic liquid(IL)provides a greener way to efficiently capture NH_(3).This paper provides rigorous process simula...Ammonia(NH_(3))emission has caused serious environment issues and aroused worldwide concern.The emerging ionic liquid(IL)provides a greener way to efficiently capture NH_(3).This paper provides rigorous process simulation,optimization and assessment for a novel NH_(3)deep purification process using IL.The process was designed and investigated by simulation and optimization using ionic liquid[C_(4)im][NTF_(2)]as absorbent.Three objective functions,total purification cost(TPC),total process CO_(2)emission(TPCOE)and thermal efficiency(ηeff)were employed to optimize the absorption process.Process simulation and optimization results indicate that at same purification standard and recovery rate,the novel process can achieve lower cost and CO_(2)emission compared to benchmark process.After process optimization,the optimal functions can achieve 0.02726$/Nm~3(TPC),311.27 kg CO_(2)/hr(TP-COE),and 52.21%(ηeff)for enhanced process.Moreover,compared with conventional process,novel process could decrease over$3 million of purification cost and 10000 tons of CO_(2)emission during the life cycle.The results provide a novel strategy and guidance for deep purification of NH_(3)capture.展开更多
Brain organoids encompass a large collection of in vitro stem cell–derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function.First,this review provides a brief int...Brain organoids encompass a large collection of in vitro stem cell–derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function.First,this review provides a brief introduction to the current state-of-the-art for neuroectoderm brain organoid development,emphasizing their biggest advantages in comparison with classical two-dimensional cell cultures and animal models.However,despite their usefulness for developmental studies,a major limitation for most brain organoid models is the absence of contributing cell types from endodermal and mesodermal origin.As such,current research is highly investing towards the incorporation of a functional vasculature and the microglial immune component.In this review,we will specifically focus on the development of immune-competent brain organoids.By summarizing the different approaches applied to incorporate microglia,it is highlighted that immune-competent brain organoids are not only important for studying neuronal network formation,but also offer a clear future as a new tool to study inflammatory responses in vitro in 3D in a brainlike environment.Therefore,our main focus here is to provide a comprehensive overview of assays to measure microglial phenotype and function within brain organoids,with an outlook on how these findings could better understand neuronal network development or restoration,as well as the influence of physical stress on microglia-containing brain organoids.Finally,we would like to stress that even though the development of immune-competent brain organoids has largely evolved over the past decade,their full potential as a pre-clinical tool to study novel therapeutic approaches to halt or reduce inflammation-mediated neurodegeneration still needs to be explored and validated.展开更多
OBJECTIVE: To explore whether moxibustion exerts therapeutic effects on rheumatoid arthritis(RA) by regulating the expression of T-cell immunoglobulin and mucin-containing protein-3(TIM-3) and subsequently modulating ...OBJECTIVE: To explore whether moxibustion exerts therapeutic effects on rheumatoid arthritis(RA) by regulating the expression of T-cell immunoglobulin and mucin-containing protein-3(TIM-3) and subsequently modulating the macrophage M1 polarization toll-like receptor 4(TLR4)-myeloid differentiation factor 88(My D88)-nuclear factor kappa B(NF-κB) signaling pathway. METHODS: We utilized moxibustion treatment in RA rat models using the Zusanli(ST36) and Shenshu(BL23) acupoints. Hematoxylin and eosin(HE) staining was used to observe the pathological changes of the synovial tissue under a section light microscope, and pathological scoring was performed according to the grading standard of the degree of synovial tissue disease. Enzyme-linked immunosorbent assay(ELISA) was applied to verify the efficacy of moxibustion in reducing inflammation. Quantitative real-time polymerase chain reaction(q RTPCR) was used to detect the expression of the TIM-3/TLR4-My D88-NF-κB signaling pathway-related molecules, and Western blot was used to detect the contents of synovial NF-κB. RESULTS: We established the Freund's complete adjuvant(FCA)-induced RA model in rats. The expression level of M1 polarization signaling pathway TLR4-My D88-NF-κB and the inflammatory factors interleukin-12(IL-12), tumor necrosis factor alpha(TNF-α), and tumor necrosis factor beta(TNF-β) were significantly increased in the RA model. After moxibustion treatment, the expression level of TLR4-My D88-NF-κB was significantly decreased, and the inflammatory factors IL-12, TNF-α, and TNF-β were decreased, but the expression level was significantly increased in the RA model. When TIM-3 expression was inhibited, the expression level of TLR4-My D88-NF-κB, and the inflammatory factors IL-12, TNF-α, and TNF-β were not suppressed, even after moxibustion treatment. CONCLUSIONS: Moxibustion regulates the key target TIM-3 by acting on the Zusanli(ST36) and Shenshu(BL23) points, thereby inhibiting the M1 polarization of macrophages;that is, it inhibits the TLR4-My D88-NF-κB signaling pathway, and finally achieves alleviation of pathological changes and anti-inflammatory effects.展开更多
Jumonji domain-containing protein D3(JMJD3)is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di-and tri-methylated groups from lysine 27 on histone 3(H3K27me2/3).The ...Jumonji domain-containing protein D3(JMJD3)is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di-and tri-methylated groups from lysine 27 on histone 3(H3K27me2/3).The erasure of these marks leads to the activation of some associated genes,thereby influencing various biological processes,such as development,differentiation,and immune response.However,comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking.Here,we provide a comprehensive overview of JMJD3,including its structure,functions,and involvement in inflammatory pathways.In addition,we summarize the evidence supporting JMJD3's role in several inflammatory diseases,as well as the potential therapeutic applications of JMJD3 inhibitors.Additionally,we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.展开更多
OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituen...OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.展开更多
Regulating the intermediates involved in the electrocatalytic nitrate reduction reaction(NO_(3)RR)is crucial for the enhancement of reaction efficiency.However,it remains a great challenge to regulate the reaction int...Regulating the intermediates involved in the electrocatalytic nitrate reduction reaction(NO_(3)RR)is crucial for the enhancement of reaction efficiency.However,it remains a great challenge to regulate the reaction intermediates through active site manipulation on the surface of the catalyst.Here,a family of n%-Co_(3)O_(4)/SiC(n=5,8,12,20)catalysts with a delicate percentage of Co^(2+)and Co^(3+)were prepared for NO_(3)RR.We found that Co^(3+)primarily acts as the active site for NO_(3)^(−)reduction to NO_(2)^(−),while Co^(2+)is responsible for the conversion of NO_(2)^(−)to NH_(3).Moreover,the conversion of these intermediates over the active sites is autonomous and separately controllable.Both processes synergistically accomplish the reduction of nitrate ions to synthesize ammonia.Combining the experimental studies and density functional theory(DFT)calculations,it is discovered the pathway(^(*)NHO→^(*)NHOH→^(*)NH_(2)OH→^(*)NH_(2)→^(*)NH_(3))is more favorable due to the lowerΔG value(0.25 eV)for the rate-limiting step(^(*)NO→^(*)NHO).The NH_(3)yield rate of 8%-Co_(3)O_(4)/SiC reached 1.08 mmol/(cm^(2)h)with a Faradaic efficiency of 96.4%at−0.89 V versus the reversible hydrogen electrode(RHE),surpassing those of most reported non-noble NO_(3)RR catalysts.This strategy not only provides an efficient catalyst for NO_(3)RR but also serves as an illustrative model for the regulation of multi-step reaction intermediates through the design of distinct active sites,thereby presenting a new approach to enhance the efficiency of intricate reactions.展开更多
In order to explore the corrosion mechanism of Al_(2)O_(3)-C refractories in the mold flux bearing MnO,the immersion test of Al_(2)O_(3)-C refractories in CaO-SiO2-CaF2-MnO slag with different MnO contents was carried...In order to explore the corrosion mechanism of Al_(2)O_(3)-C refractories in the mold flux bearing MnO,the immersion test of Al_(2)O_(3)-C refractories in CaO-SiO2-CaF2-MnO slag with different MnO contents was carried out at 1550℃.The results show that Mn particles were observed in the slag after experiment,due to the reduction of MnO by graphite in refractories.Large amounts of graphite were observed at the interface between refractories and slag,indicating that the oxidation of graphite is limited by the poor contact between graphite and molten slag.Therefore,the oxidation of graphite is not the main cause of damage to refractories.A small quantity of CaO·2Al_(2)O_(3)(CA_(2))and CaO·6Al_(2)O_(3)(CA_(6))adjacent to Al_(2)O_(3) grain was detected at the slag/reaction layer interface.CA_(2) and CA_(6) possess relatively high melting points,which is beneficial to hindering the further penetration of slag.However,the dissolution of Al_(2)O_(3) into slag is still the main cause for refractories damage.The increase in the MnO content of mold slag decreases the viscosity and then results in the severe corrosion of Al_(2)O_(3)-C bricks.展开更多
α-(Trifluoromethyl)styrene and its derivatives have found wide applications in the fields of pharmaceuti-cals,agrochemicals,and advanced materials.They are also versatile trifluoromethyl-containing building blocks fo...α-(Trifluoromethyl)styrene and its derivatives have found wide applications in the fields of pharmaceuti-cals,agrochemicals,and advanced materials.They are also versatile trifluoromethyl-containing building blocks for the preparation of various trifluoromethyl-containing,fluorine-containing or nonfluorinated compounds.Recently,great efforts have been made to develop diverse reactions for rapidly accessing a wide range of valuable gem–difluoroalkenes and gem–difluoroalkylated compounds via defluorinative re-action or the defluorinative ipso-functionalization reaction ofα-(trifluoromethyl)styrenes,respectively.In contrast,α-(trifluoromethyl)styrenes remain notably underdeveloped with respect to their use in cycload-dition and hydroaddition reaction with retaining of three C–F bonds.This short review herein is aimed to summarize the recent progress on the cycloaddition and hydroaddition reaction including nucleophilic,radical and transition metal-catalyzed addition ofα-(trifluoromethyl)styrenes without accompanying de-fluorination.展开更多
[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表...[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表面张力及其在黄瓜叶面的动态接触角,并开展了防治黄瓜白粉病田间药效试验。[结果]最佳配方为3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺40%(折百)、S043%、D4252%、W071%、乙二醇3%、硅酸镁铝0.4%、黄原胶0.12%、B150.12%、消泡剂X600.3%、水补足。此悬浮剂在有效成分0.27 g a.i./L时的表面张力以及在黄瓜叶面的动态接触角均小于对照药剂40%苯醚甲环唑SC,表明其具有良好的润湿性能。在有效成分0.27 g a.i./L下的防效为88.38%,与对照药剂25%嘧菌酯SC 0.20 g a.i./L相当,且对黄瓜安全。[结论]制备悬浮剂为类白色均匀悬浮液,流动性好,粒径合格,悬浮率稳定在98.5%左右,pH为4.09,黏度为452 mPa·s,入水分散性合格,热储、低温及冻融稳定性良好,未出现沉淀,各项指标均达标,对黄瓜白粉病防效优良,具有良好的开发应用前景。展开更多
基金This work was partially supported by the National Natural Science Foundation of China.
文摘A novel CF_3-containing building block, (Z)-ethyl 3-bromo-4,4,4-trifluoro-2-butenoate, was easily prepared from CF_3CBr_3, the former reacted with alkynes Or organozinc reagents in the presence of Pd complexes to afford useful CF_3-containing intermediates in good yield.
基金Item Sponsored by National Natural Science Foundation of China (50474037) Jiangsu Province Natural Science Foundation forUniversity of China (04BJK430022)
文摘The flux agents in common mould fluxes were fluoride and sodium oxide, which would do great harm to environments. B2O3 was selected as flux. The physical properties of B2O3-containing mould fluxes were studied. The corresponding physical properties of 37. 91% CAO-43.09% SiO2-5% Al2O3-5% MgO-2% Li20-7% B2O3 mould fluxes were as follows: the melting point was 909℃, the flowing temperature was 1 160℃, the viscosity and surface tension at 1300 ℃ were 0. 4 Pa · s and 0.32 N/m respectively, which could meet the demands for certain kinds of steels for mould fluxes in continuous casting.
文摘Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 content, the intensity of characteristic absorption peak is increased and the absorption peak is broadened. With increasing of the ratios of SiO2/B2O3 and Al2O3/SiO2, the broadening degree of absorption peak is increased. The experimental results provide basis for making special optical glasses which have the characteristics of high absorption for special wavelength laser and high transparence for visible light.
文摘The Dissolving loss of Nd in the systems NdCl_3-MCl_n(M=Li,Na,K,Ca,Sr,Ba;n=1 or 2) and the NdCl_3-rich NdCl_3-LiF motlen salts,and in the system of NdCl_3-(90 wt% KCl,10 wt%MCl_n) was determined.It was found that the dissolving loss of Nd (B_(Nd)) in the NdCl_3-KCl,NdCl_3-CaCl_2 and NdCl_3-(90 wt%KCl,10 wt%CaCl_2) melts is rather insignificant.The dissolving loss of Nd in the NdCl_3-KCl system increases with temperature,yet it is only 1/3 of that in pure NdCl_3 when the content of NdCl_3 was less than 50 wt% in the mixture.Addition of LiF to NdCl_3 can diminish the dissolving loss of Nd.The nature of interaction between metallic Nd and its salts was also discussed.
基金supported by the National Natural Science Foundation of China(32070642 and 31371222 to Dr.Xiaoxue Wang)the National Key Research and Development Program from the Ministry of Science and Technology of China(2016YFD0100406 and 2017YFD0300107 to Dr.Xiaoxue Wang)the Science and Technology Department of Liaoning province(2022JH6/100100039 to Dr.Xiaoxue Wang)。
文摘The leaf is a major organ for photosynthesis,and its shape plays an important role in plant development and yield determination in rice(Oryza sativa L.).In this study,an adaxial curled leaf mutant,termed curly leaf 1-1(cul1-1),was obtained by chemical mutagenesis.The leaf rolling index of the cul1-1 mutant was higher than that of the wild-type,which was caused by the abnormal development of bulliform cells(BCs).We cloned the CUL1 gene by map-based cloning.A nonsense mutation was present in the cul1-1 mutant,converting a tryptophan codon into a stop codon.The CUL1 gene encodes a chromodomain,helicase/ATPase and DNA-binding domain containing protein.Genes related to leaf rolling and BC development,such as ADL1,REL1 and ROC5,were activated by the cul1-1 mutation.The trimethylation of lysine 27 in histone 3(H3K27me3),but not H3K4me3,at the ADL1,REL1 and ROC5 loci,was reduced in the cul1-1 mutant.High-throughput mRNA sequencing indicated that the cul1-1 mutation caused genome-wide differential gene expression.The differentially expressed genes were classified into a few gene ontology terms and Kyoto encyclopedia of genes and genomes pathways.In the natural population,22 missense genomic variations in the CUL1 locus were identified,which composed of 7 haplotypes.A haplotype network was also built with haplotype II as the ancestor.The findings revealed that CUL1 is essential for normal leaf development and regulates this process by inhibiting the expression of genes involved in leaf rolling and BC development.
基金supported by the National Natural Science Foundation of China(21875076)the Guangdong Provincial International Joint Research Center for Energy Storage Materials(2023A0505090009)the Science and Technology Planning Project of Guangzhou City(2023B03J1278)。
文摘Electrolyte additives are pivotal for stable cycling of rechargeable sodium-ion batteries(SIBs),which dictate the creation of the protective interface film on electrodes.Cyclic sulfur-containing additives,such as1,3,2-dioxathiolane-2,2-dioxide(DTD),with the structure of sulfur surrounded by four oxygen atoms,have been proposed but less knowledge is available on the relationship between their molecular structures and interfacial stability.This work compares two similar molecule structure of cyclic sulfurcontaining additives,DTD and ethylene sulfite(ES),to investigate their effects on the electrochemical performance of NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM)||hard carbon(HC)pouch cells.Therein,ES with the structure of sulfur surrounded by three oxygen atoms,as electrolyte additive,is investigated in the SIBs for the first time.It is shown that adding 3.0%ES or 2.0%DTD(the optimal proportion)in the Control electrolyte(1 M NaPF_(6)in EC:EMC=3:7 with 5.0%FEC in weight)can improve cyclic stability and rate performance,respectively.Even under the high-temperature conditions,both ES and DTD exhibit good performance,but DTD is superior.Combinations of electrochemical methods,multi-spectroscopy,and theoretical calculations have been employed to evaluate and compare the effects of ES and DTD on sodium-ion battery.They reveal that ES and DTD can generate different content and composition by redox reaction on cathode and anode surface.The more and effective high-valence sulfur-containing components for DTD are the main reason to explain the better effect on DTD.This work shares new insights into the relationship between cyclic sulfur-containing additive molecule structure and electrolyte-electrode interface films effect,which fills the blanks of previous research.
基金supported by the National Natural Science Foundation of China (No.52121004)the National Science Fund for Distinguished Young Scholars (No.51825403)+2 种基金the Science and Technology Innovation Program of Hunan Province,China (No.2021RC3013)National Key R&D Program of China (No.2022YFC3901602)the Major Science and Technology Project of Gansu Province,China (No.21ZD4GD033)。
文摘A method to upgrade the iron grade in copper slag was proposed using lime to decompose Al_(2)O_(3)-containing fayalite melt(AFMT).Thermodynamic calculations indicated that adjusting the CaO/AFMT ratio can yield a residual melt with a FeO concentration of 75−88 wt.%and produce Ca_(2)SiO_(4).In-situ observations suggested that the reaction was impeded in some way.Quenching experiments revealed that the initial reaction products consisted of calcium ferrite compounds and FeO−CaO melt.At the FeO−CaO melt/AFMT interface,Ca_(2)SiO_(4) particles precipitated,forming a dense Ca_(2)SiO_(4) film that significantly impeded mass transfer.Although trace amounts of Al_(2)O_(3) in AFMT temporarily enhanced mass transfer,they were insufficient to overcome this retardation effect.The decomposition reaction was far from achieving equilibrium,demonstrating a self-retardation effect.Measures must be implemented to eliminate this self-retardation effect and enhance the efficiency of reaction kinetics.
文摘In the search for new drugs with more efficient active ingredients, various transition metals are being explored as potential metallopharmaceuticals. These compounds, which combine drugs with metals, have shown promise as chemotherapeutic agents, akin to the accidental discovery of cisplatin and its organic derivatives in the late 20th century. This discovery transformed the sciences, particularly in the fields of organic and inorganic chemistry, by offering new insights into the compositions and molecular geometries of inorganic complexes through coordination chemistry, while also intersecting with other scientific domains such as pharmacology and medicine. To contribute to the development of new chemotherapeutic compounds through simple and reproducible synthetic processes, this study utilized rhodium(III) chloride hydrate (RhCl3.nH2O) to synthesize a series of compounds with the following organic N-heterocyclic ligands: 4,4'-dimethyl-2,2'-bipyridine, isonicotinamide, and N-(3-pyridyl)-isonicotinamide (3-pina). Two analytical techniques were employed to characterize the resulting materials: spectroscopic analysis in the infrared region, which suggested interactions and substitutions at the metal center by the organic compounds, and thermoanalytical analyses, which led to the proposal of minimum formulas for the compounds as follows: C1 [RhCl2(4,4'-Met-2,2'-bipy)2]Cl∙5/2H2O and C2 [Rh(4,4'-Met-2,2'-bipy)2(Iso)2] Cl3∙1/2H2O. However, the complexation of the third compound could not be confirmed due to the physicochemical characteristics of the resulting complex being very similar to those of the starting material, thereby validating the effectiveness of these techniques in differentiating and characterizing the synthesized salts. Due to their solubility in water and/or alcohol and thermal stability, the complexes were tested in biological media to assess cell viability in peripheral blood mononuclear cells. The solutions of these salts demonstrated favorable cell viability under the tested conditions, according to statistical analysis, obtaining average viability in the range of 95 ≤ x ≤ 100, with standard deviations between 3.29 ≤ x ≤ 4.44 for living cells.
基金supported by the National Natural Science Foundation of China (Nos.21890760 and 21838010)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No.21921005)the International (Regional)Cooperation and Exchange of the National Natural Science Foundation of China (No.21961160744)。
文摘Ammonia(NH_(3))emission has caused serious environment issues and aroused worldwide concern.The emerging ionic liquid(IL)provides a greener way to efficiently capture NH_(3).This paper provides rigorous process simulation,optimization and assessment for a novel NH_(3)deep purification process using IL.The process was designed and investigated by simulation and optimization using ionic liquid[C_(4)im][NTF_(2)]as absorbent.Three objective functions,total purification cost(TPC),total process CO_(2)emission(TPCOE)and thermal efficiency(ηeff)were employed to optimize the absorption process.Process simulation and optimization results indicate that at same purification standard and recovery rate,the novel process can achieve lower cost and CO_(2)emission compared to benchmark process.After process optimization,the optimal functions can achieve 0.02726$/Nm~3(TPC),311.27 kg CO_(2)/hr(TP-COE),and 52.21%(ηeff)for enhanced process.Moreover,compared with conventional process,novel process could decrease over$3 million of purification cost and 10000 tons of CO_(2)emission during the life cycle.The results provide a novel strategy and guidance for deep purification of NH_(3)capture.
基金funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No.813263(PMSMat Train,granted to UF,PP,MV,and DP)provided by the Fund for Scientific Research Flanders(FWO-Vlaanderen)of the Flemish Government(FWO sabbatical bench fee K800224N granted to PP)and ERA-NET Re Park(granted to PP)。
文摘Brain organoids encompass a large collection of in vitro stem cell–derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function.First,this review provides a brief introduction to the current state-of-the-art for neuroectoderm brain organoid development,emphasizing their biggest advantages in comparison with classical two-dimensional cell cultures and animal models.However,despite their usefulness for developmental studies,a major limitation for most brain organoid models is the absence of contributing cell types from endodermal and mesodermal origin.As such,current research is highly investing towards the incorporation of a functional vasculature and the microglial immune component.In this review,we will specifically focus on the development of immune-competent brain organoids.By summarizing the different approaches applied to incorporate microglia,it is highlighted that immune-competent brain organoids are not only important for studying neuronal network formation,but also offer a clear future as a new tool to study inflammatory responses in vitro in 3D in a brainlike environment.Therefore,our main focus here is to provide a comprehensive overview of assays to measure microglial phenotype and function within brain organoids,with an outlook on how these findings could better understand neuronal network development or restoration,as well as the influence of physical stress on microglia-containing brain organoids.Finally,we would like to stress that even though the development of immune-competent brain organoids has largely evolved over the past decade,their full potential as a pre-clinical tool to study novel therapeutic approaches to halt or reduce inflammation-mediated neurodegeneration still needs to be explored and validated.
基金the National Natural Science Foundation of China:Study on Immunoregulatory Mechanism of Moxibustion"Regulating Weiqi"to Regulate the Intrasynovial Environment Steady State in Rheumatoid Arthritis Model Rats based on the Skin-resident Memory T cells-Growth Arrest-specific 6/Mer Tyrosine Kinase (No. 82374587)the National Natural Science Foundation of China:Study on the Immune Mechanisms of Macrophage M1/M2 Polarization in the Treatment of Rheumatoid Arthritis by Moxibustion"Strengthening Body Resistance and Eliminating Evil"(No. 81973959)+1 种基金the National Key R&D Program of China:Research on the Functional Characteristics of"Special Effects"and"Common Effects"of Acupoints (No. 2019YFC1709001)Science and Technology Innovation Seedling Project of Sichuan Province:based on Macrophage M1 Polarization Signaling Pathway Toll-like receptor 4/Myeloid differentiation factor 88/Nuclear factor kappa B and its Regulatory Molecule T-cell Immunoglobulin and Mucin-containing Protein-3 Exploring the Effect Mechanism of Moxibustion on Experimental Rheumatoid Arthritis Model (No. 2022037)。
文摘OBJECTIVE: To explore whether moxibustion exerts therapeutic effects on rheumatoid arthritis(RA) by regulating the expression of T-cell immunoglobulin and mucin-containing protein-3(TIM-3) and subsequently modulating the macrophage M1 polarization toll-like receptor 4(TLR4)-myeloid differentiation factor 88(My D88)-nuclear factor kappa B(NF-κB) signaling pathway. METHODS: We utilized moxibustion treatment in RA rat models using the Zusanli(ST36) and Shenshu(BL23) acupoints. Hematoxylin and eosin(HE) staining was used to observe the pathological changes of the synovial tissue under a section light microscope, and pathological scoring was performed according to the grading standard of the degree of synovial tissue disease. Enzyme-linked immunosorbent assay(ELISA) was applied to verify the efficacy of moxibustion in reducing inflammation. Quantitative real-time polymerase chain reaction(q RTPCR) was used to detect the expression of the TIM-3/TLR4-My D88-NF-κB signaling pathway-related molecules, and Western blot was used to detect the contents of synovial NF-κB. RESULTS: We established the Freund's complete adjuvant(FCA)-induced RA model in rats. The expression level of M1 polarization signaling pathway TLR4-My D88-NF-κB and the inflammatory factors interleukin-12(IL-12), tumor necrosis factor alpha(TNF-α), and tumor necrosis factor beta(TNF-β) were significantly increased in the RA model. After moxibustion treatment, the expression level of TLR4-My D88-NF-κB was significantly decreased, and the inflammatory factors IL-12, TNF-α, and TNF-β were decreased, but the expression level was significantly increased in the RA model. When TIM-3 expression was inhibited, the expression level of TLR4-My D88-NF-κB, and the inflammatory factors IL-12, TNF-α, and TNF-β were not suppressed, even after moxibustion treatment. CONCLUSIONS: Moxibustion regulates the key target TIM-3 by acting on the Zusanli(ST36) and Shenshu(BL23) points, thereby inhibiting the M1 polarization of macrophages;that is, it inhibits the TLR4-My D88-NF-κB signaling pathway, and finally achieves alleviation of pathological changes and anti-inflammatory effects.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.:LY24C190001)the General Scientific Research Project of Education of Zhejiang Province,China(Grant Nos.:Y202352559 and Y202147351)+1 种基金the Starting Research Fund of Ningbo University,China(Grant Nos.:421912073 and 422204123)the Student Research and Innovation Program of Ningbo University,China(Grant Nos.:2023SRIP1810 and 2023SRIP1804).
文摘Jumonji domain-containing protein D3(JMJD3)is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di-and tri-methylated groups from lysine 27 on histone 3(H3K27me2/3).The erasure of these marks leads to the activation of some associated genes,thereby influencing various biological processes,such as development,differentiation,and immune response.However,comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking.Here,we provide a comprehensive overview of JMJD3,including its structure,functions,and involvement in inflammatory pathways.In addition,we summarize the evidence supporting JMJD3's role in several inflammatory diseases,as well as the potential therapeutic applications of JMJD3 inhibitors.Additionally,we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
基金Natural Science Foundation Project of Chongqing Municipality:a Metabolome-based Study on the Protective Mechanism of Yemazhui(Herba Eupatorii Lindleyani)Sesquiterpene Lactones Against Acute Lung Injury(No.cstc2021jcyj-msxmX0365)Science and Technology Research Program of Chongqing Municipal Education Commission:a Cytokine Storm-based Study of the Protective Effect of Yemazhui(Herba Eupatorii Lindleyani)Extract Intervention on COVID-19 Lung Injury(No.KJZD-K202215101)。
文摘OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.
基金financially supported by the National Key Research and Development Program of China (2018YFA0209404)the Fundamental Research Funds for the Central Universities (DUT22LAB601)
文摘Regulating the intermediates involved in the electrocatalytic nitrate reduction reaction(NO_(3)RR)is crucial for the enhancement of reaction efficiency.However,it remains a great challenge to regulate the reaction intermediates through active site manipulation on the surface of the catalyst.Here,a family of n%-Co_(3)O_(4)/SiC(n=5,8,12,20)catalysts with a delicate percentage of Co^(2+)and Co^(3+)were prepared for NO_(3)RR.We found that Co^(3+)primarily acts as the active site for NO_(3)^(−)reduction to NO_(2)^(−),while Co^(2+)is responsible for the conversion of NO_(2)^(−)to NH_(3).Moreover,the conversion of these intermediates over the active sites is autonomous and separately controllable.Both processes synergistically accomplish the reduction of nitrate ions to synthesize ammonia.Combining the experimental studies and density functional theory(DFT)calculations,it is discovered the pathway(^(*)NHO→^(*)NHOH→^(*)NH_(2)OH→^(*)NH_(2)→^(*)NH_(3))is more favorable due to the lowerΔG value(0.25 eV)for the rate-limiting step(^(*)NO→^(*)NHO).The NH_(3)yield rate of 8%-Co_(3)O_(4)/SiC reached 1.08 mmol/(cm^(2)h)with a Faradaic efficiency of 96.4%at−0.89 V versus the reversible hydrogen electrode(RHE),surpassing those of most reported non-noble NO_(3)RR catalysts.This strategy not only provides an efficient catalyst for NO_(3)RR but also serves as an illustrative model for the regulation of multi-step reaction intermediates through the design of distinct active sites,thereby presenting a new approach to enhance the efficiency of intricate reactions.
基金the National Natural Science Foundation of China(52274305 and U1860205)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001).
文摘In order to explore the corrosion mechanism of Al_(2)O_(3)-C refractories in the mold flux bearing MnO,the immersion test of Al_(2)O_(3)-C refractories in CaO-SiO2-CaF2-MnO slag with different MnO contents was carried out at 1550℃.The results show that Mn particles were observed in the slag after experiment,due to the reduction of MnO by graphite in refractories.Large amounts of graphite were observed at the interface between refractories and slag,indicating that the oxidation of graphite is limited by the poor contact between graphite and molten slag.Therefore,the oxidation of graphite is not the main cause of damage to refractories.A small quantity of CaO·2Al_(2)O_(3)(CA_(2))and CaO·6Al_(2)O_(3)(CA_(6))adjacent to Al_(2)O_(3) grain was detected at the slag/reaction layer interface.CA_(2) and CA_(6) possess relatively high melting points,which is beneficial to hindering the further penetration of slag.However,the dissolution of Al_(2)O_(3) into slag is still the main cause for refractories damage.The increase in the MnO content of mold slag decreases the viscosity and then results in the severe corrosion of Al_(2)O_(3)-C bricks.
基金support from the National Natural Science Foundation of China (No. 21472043)
文摘α-(Trifluoromethyl)styrene and its derivatives have found wide applications in the fields of pharmaceuti-cals,agrochemicals,and advanced materials.They are also versatile trifluoromethyl-containing building blocks for the preparation of various trifluoromethyl-containing,fluorine-containing or nonfluorinated compounds.Recently,great efforts have been made to develop diverse reactions for rapidly accessing a wide range of valuable gem–difluoroalkenes and gem–difluoroalkylated compounds via defluorinative re-action or the defluorinative ipso-functionalization reaction ofα-(trifluoromethyl)styrenes,respectively.In contrast,α-(trifluoromethyl)styrenes remain notably underdeveloped with respect to their use in cycload-dition and hydroaddition reaction with retaining of three C–F bonds.This short review herein is aimed to summarize the recent progress on the cycloaddition and hydroaddition reaction including nucleophilic,radical and transition metal-catalyzed addition ofα-(trifluoromethyl)styrenes without accompanying de-fluorination.
文摘[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表面张力及其在黄瓜叶面的动态接触角,并开展了防治黄瓜白粉病田间药效试验。[结果]最佳配方为3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺40%(折百)、S043%、D4252%、W071%、乙二醇3%、硅酸镁铝0.4%、黄原胶0.12%、B150.12%、消泡剂X600.3%、水补足。此悬浮剂在有效成分0.27 g a.i./L时的表面张力以及在黄瓜叶面的动态接触角均小于对照药剂40%苯醚甲环唑SC,表明其具有良好的润湿性能。在有效成分0.27 g a.i./L下的防效为88.38%,与对照药剂25%嘧菌酯SC 0.20 g a.i./L相当,且对黄瓜安全。[结论]制备悬浮剂为类白色均匀悬浮液,流动性好,粒径合格,悬浮率稳定在98.5%左右,pH为4.09,黏度为452 mPa·s,入水分散性合格,热储、低温及冻融稳定性良好,未出现沉淀,各项指标均达标,对黄瓜白粉病防效优良,具有良好的开发应用前景。