The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the ca...The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the catalyst deactivation via sintering,metal leaching,and coking can predominantly occur in the aqueous phase reaction.In this work,the effect of reaction temperature,pressure and second promoter(Cu,Fe,Rh,Mn,Re,Ru,Ir,Sn,B,and P)on catalytic performance and deactivation behaviour of Pt/WOx/-Al2O3 was investigated.When doped with Rh,Mn,Re,Ru,Ir,B,and P,the second promoter boosts catalytic activity by promoting great dispersion of Pt on support and increasing Pt surface area.The increased Bronsted acid sites lead to selective synthesis of 1,3-PDO than 1,2-propanediol(1,2-PDO).The characterization studies of fresh and spent catalysts reveal that the main cause of catalyst deactivation is the Pt sintering,as interpreted based on XRD,CO chemisorption,and TEM analyses.The Pt sintering is affected depending on the second promoter that can either or reduce the interaction between Pt,WO_(χ)/γ and Al_(2)O_(3).As an electron acceptor of Pt in Pt/WO_(χ)/γ-Al_(2)O_(3),Re and Mn as second promoters resulted in increased Pt^(2+) on the catalytic surface,which strengthens the contact between Pt andγ-Al_(2)O_(3) and WO_(χ),resulting in a decrease in Pt sintering.The metal leaching and coking are not affected by the presence of second promoter.The catalyst modified with a second promoter possesses improved catalytic activity and 1,3-PDO production,however the stability continues to remain a challenge.The present work unrav-elled the determining parameters of catalytic activity and deactivation,thus providing a promising pro-tocol toward effective catalysts for glycerol hydrogenolysis.展开更多
As an alternative to antibiotics in response to antimicrobial-resistant infections,bacteriophages(phages)are garnering renewed interest in recent years.However,the massive preparation of phage is restricted using trad...As an alternative to antibiotics in response to antimicrobial-resistant infections,bacteriophages(phages)are garnering renewed interest in recent years.However,the massive preparation of phage is restricted using traditional pathogens as host cells,which incurs additional costs and contamination.In this study,an opportunistic pathogen,Klebsiella pneumoniae used to convert glycerol to 1,3-propanediol(1,3-PDO),was reused to prepare phage after fermentation.The phage infection showed that the fed-batch fermentation broth containing 71.6 g/L 1,3-PDO can be directly used for preparation of phage with a titer of 1×10^(8) pfu/mL.Then,the two-step salting-out extraction was adopted to remove most impurities,e.g.acetic acid(93.5%),ethanol(91.5%)and cells(99.4%)at the first step,and obtain 1,3-PDO(56.6%)in the top phase as well as phage(97.4%)in the middle phase at the second step.This integrated process provides a cheap and environment-friendly manner for coproduction of 1,3-PDO and phage.展开更多
Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3‐propanediol. The calcination temperature played an important role in the structural evolution and ...Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3‐propanediol. The calcination temperature played an important role in the structural evolution and catalytic performance of the Cu/SiO2 catalysts, which were systematically characterized by N2 adsorption‐desorption, inductively coupled plasma‐atomic emission spectros‐copy, N2O chemisorption, X‐ray diffraction, Fourier transform infrared spectroscopy, H2 tempera‐ture‐programmed reduction, transmission electron microscopy, and X‐ray photoelectron spectros‐copy. When the Cu/SiO2 catalyst was calcined at 723 K, 90.7%conversion of diethyl malonate and 32.3%selectivity of 1,3‐propanediol were achieved. Compared with Cu/SiO2 catalysts calcined at other temperatures, the enhanced catalytic performance of the Cu/SiO2 catalyst calcined at 723 K can be attributed to better dispersion of copper species, larger cupreous surface area and greater amount of copper phyllosilicate, which results in a higher ratio of Cu+/Cu0. The synergetic effect of Cu0 and Cu+is suggested to be responsible for the optimum activity.展开更多
The selective hydrogenolysis of glycerol to 1,3-propanediol(1,3-PDO)is an attractive reaction due to the high demand for valorization of huge excess amounts of glycerol supply as well as the important application of 1...The selective hydrogenolysis of glycerol to 1,3-propanediol(1,3-PDO)is an attractive reaction due to the high demand for valorization of huge excess amounts of glycerol supply as well as the important application of 1,3-PDO in polyester industry.Nevertheless,the formation of 1,3-PDO is thermodynamically less favorable than 1,2-PDO,which necessitates the development of efficient catalysts to manipulate the reaction kinetics towards the 1,3-PDO formation.Among others,Pt-W based catalysts have shown promising activities and selectivities of 1,3-PDO although the reaction mechanism is not well addressed at the molecular level.In this short review,we have compared the performances of different Pt-W based catalysts and discussed the key factors influencing the activity and selectivity.Three possible reaction mechanisms have been discussed in terms of the synergy between Pt and WO_x and the origin of acid sites.Finally,the long-term stability of the Pt-W catalysts has been discussed.We hope this review will provide useful information for the development of more efficient catalysts for this important reaction.展开更多
1,3-Propanediol,traditionally obtained from fossils,has numerous industrial applications,including use in the production of high performance polymers.The microbial production of 1,3-propanediol presents several opport...1,3-Propanediol,traditionally obtained from fossils,has numerous industrial applications,including use in the production of high performance polymers.The microbial production of 1,3-propanediol presents several opportunities,and the final purity grade determines its price and commercial viability.The development of novel separation technology could improve the economic viability of the bioproduction of 1,3-propanediol.Thus,we investigated salting-out extraction as a novel process for 1,3-propanediol recovery from fermentation broth.Initially,a screening for the best salt/solvent combination was conducted and then optimized using the response surface methodology.The solvents studied were methanol,ethanol,isopropanol and acetone,and the salts examined were K_2HPO_4,Na_2CO_3,K_2CO_3,(NH_4)_2SO_4,NaHPO_4,K_3PO_4 and C_6H_5NaO_7.The optimal extraction system consisted of 34 wt%K_3PO_4,28 wt% ethanol,and 38 wt% fermentation broth containing 23.0 g·L^(-1)1,3-propanediol,which gave the highest partition coefficient of 33 and recovery yield of 97%.The results demonstrated that salting-out extraction was a promising method for 1,3-propanediol recovery from fermentation broth.展开更多
Cu-x-Fe-y/SiO2 catalysts were prepared using urea-assisted sol-gel method. The structure and physicochemical properties of the catalysts were characterized using N-2 adsorption-desorption, transmission electron micros...Cu-x-Fe-y/SiO2 catalysts were prepared using urea-assisted sol-gel method. The structure and physicochemical properties of the catalysts were characterized using N-2 adsorption-desorption, transmission electron microscopy, H-2-temperature-programmed reduction, powder X-ray diffraction, and X-ray photoelectron spectroscopy. Compared with monometallic Cu or Fe catalysts, the bimetallic Cu-x-Fe-y/SiO2 catalysts exhibited enhanced catalytic performance for the selective hydrogenation of diethyl malonate to 1,3-propanediol. The bimetallic catalyst with an optimal Cu/Fe atomic ratio of 2 exhibited the highest activity, which yielded 96.3% conversion to diethyl malonate and 93.3% selectivity to 1,3-propanediol under the optimal reaction conditions. Characterization results revealed that interactions between Cu and Fe contributed to the improvement of diethyl malonate conversion and selectivity to 1,3-propanediol. The X-ray photoelectron spectroscopy results revealed that the addition of appropriate amount of Fe species enhanced the reduction of Cu2+ species, thereby increasing the Cu-0 species on the surface of bimetallic catalyst. It led to a better chemisorption capacity of hydrogen and further promoted of the activation of hydrogen molecule. The ethyl acetate temperature-programmed desorption results indicated that the FeOx species provided the additional adsorption sites for substrate molecules, and they activated the C=O bond. The improved catalytic performance of bimetallic Cu-x-Fe-y/SiO2 catalyst was mainly attributed to the synergistic effect between Cu-0 and FeOx species. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was follow...The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was followed to determine and optimize fermentation conditions for the maximum production of 1,3-PDO using marine-derived Klebsiella pneumoniae HSL4. Four nutritional supplements together with three independent culture conditions were optimized as follows: 29.3 g/L glycerol, 8.0 g/L K2HPO4, 7.6 g/L (NH4)2SO4, 3.0 g/L KH2PO4, pH 7.1, cultivation at 35℃ for 12 h. Under the optimal conditions, a maximum 1,3-PDO concentration of 14.5 g/L, a productivity of 1.21 g/(L'h) and a conversion of glycerol of 0.49 g/g were obtained. In comparison with the control conditions, fermentation under the optimized conditions achieved an increase of 38.8% in 1,3-PDO concentration, 39.0% in productivity and 25.7% in glycerol conversion in flask. This enhancement trend was further confirmed when the fermentation was conducted in a 5-L fermentor. The optimized fermentation conditions could be an important basis for developing low- cost, large-scale methods for industrial production of 1,3-PDO in the future.展开更多
As the biodiesel production is rapidly enhanced, the crude glycerol, which is by-product of biodiesel processes, is state of surplus. 1,3-PDO (1,3-propanediol), a valuable monomer of poly(trimethylene terephthalate) (...As the biodiesel production is rapidly enhanced, the crude glycerol, which is by-product of biodiesel processes, is state of surplus. 1,3-PDO (1,3-propanediol), a valuable monomer of poly(trimethylene terephthalate) (PTT), can be produced from the fermentation process using crude glycerin as a carbon source. For the economic biological production of 1,3-PDO, the low cost and high efficient separation processes is essential. In this study, aqueous two-phase system composed of various hydrophilic alcohols and salt was used as a primary separation step for 1,3-PDO. It was found that the aqueous two-phase systems are easily formed with decreasing of the polarity of alcohols. The extraction efficiency is proportional to the polarity of alcohols. In case of methanol or ethanol/K2HPO4, the extraction efficiency was more than 90%.? It was concluded that the aqueous two-phase extraction using methanol or ethanol/K2HPO4 can be applied? for the primary separation of 1,3-PDO? as an alternative to a conventional primary separation processes.展开更多
1,3-Propanediol is a promising renewable resource produced by microbial production. It is mainly used in many synthetic reactions, particularly applied to the polymer synthesis and cosmetics industry. We described her...1,3-Propanediol is a promising renewable resource produced by microbial production. It is mainly used in many synthetic reactions, particularly applied to the polymer synthesis and cosmetics industry. We described here the isolation of strain ZH-1, which has the ability of high production with 1,3-propanediol, from Fenhe River in China. It was classified as a member of K. pneumoniae after the study of phenotypic, physio-logical, biochemical and phylogenetic (16S rDNA). The initial glycerol concentration, fermentation time and pH value of strain ZH-1 were determined to be 50 g·L<sup>-1</sup>, 36 h and 8.0. Under these conditions, the practical yield of 1,3-PD was 18.53 g·L<sup>-1</sup> and a molar yield (mol<sub>1,3-PD</sub> mol<sub>Glycerol</sub>-1</sup> of 1,3-propanediol to glycerol of 0.497. In addition, we found that for the strain ZH-1, the optimum grown pH was 9.0, so we can deter-mine that it is a new member of alkali-resistant strains.展开更多
The natural environment is inhabited by many species that exhibit very specific metabolic activities that may find industrial applications. The aim of the study was to select non-pathogenic cultures of bacteria of the...The natural environment is inhabited by many species that exhibit very specific metabolic activities that may find industrial applications. The aim of the study was to select non-pathogenic cultures of bacteria of the genus Clostridium and lactic acid bacteria able to convert glycerol into 1,3-propanediol (1,3-PD). Another aim of this study was to identify the isolates that best produced 1,3-propanediol both from pure and crude glycerol. The most efficient strains identified (Cl. butyricum) were analysed on a bioreactor scale. The aim was to determine temperature conditions on the efficiency and duration of 1,3-PD synthesis. The species Clostridium were identified using amplification of the 16S rRNA coding sequence. A total of 123 isolates (of the genus Clostridium and lactic acid bacteria) were isolated;a vast majority of these were able to synthesize 1,3-PD. The best results were obtained for Cl. butyricum strain DSP1, which was isolated from the rumen of a cow fed with glycerol. The strain efficiency using pure glycerol on bioreactor scale 0.65 mol/mol of glycerol at a temperature of 38℃ and a constant pH of 7.0.展开更多
Background:1,3-Propanediol is the starting point of a new-generation polymer with superior properties which can be used in many industrial fields.3-Hydroxypropionaldehyde and lactate have been identified as two import...Background:1,3-Propanediol is the starting point of a new-generation polymer with superior properties which can be used in many industrial fields.3-Hydroxypropionaldehyde and lactate have been identified as two important metabolites in the biological route of 1,3-propanediol bioconversion from glycerol.Here,influence of lactate on the inhibition caused by 3-hydroxypropionaldehyde of 1,3-propanediol fermentation by Klebsiella pneumoniae is reported.Methods:The influences of 3-hydroxypropionaldehyde and lactate on 1,3-propanediol production were investigated in normal and lactate pathway deficient strains with different fermentation conditions.Results:By using the strains KG1 and L-type lactate dehydrogenase-deficient mutant(KG1Δldh),the results indicated that an early accumulation of 3-hydroxypropionaldehyde directly inhibited the 1,3-propanediol production rather than through lactate accumulation during the late stage of fermentation.Then,the influence of extra addition of lactate on the late stage of fermentation was investigated,and the inhibitory effect of lactate did not appear.At last,it was found that by reducing 3-hydroxypropionaldehyde accumulation in the early stage of fermentation,the concentration and yield of 1,3-propanediol increased by 18%and 16%,respectively,over the initial experimental levels.Conclusions:An early accumulation of 3-hydroxypropionaldehyde directly decreased the final 1,3-propanediol concentration rather than through lactate accumulation during the late stage of fermentation.展开更多
Pt/Au/WO_3 bimetallic catalysts were prepared by impregnation of Pt onto preformed Au/WO_3,obtained by a hexadecyl trmethyl ammonium bromide(CTAB)-assisted one-pot synthesis method.The resulting Pt/Au/WO_3 catalysts...Pt/Au/WO_3 bimetallic catalysts were prepared by impregnation of Pt onto preformed Au/WO_3,obtained by a hexadecyl trmethyl ammonium bromide(CTAB)-assisted one-pot synthesis method.The resulting Pt/Au/WO_3 catalysts exhibited remarkable synergistic effects for selective hydrogenolysis of glycerol to 1,3-propanediol. The characterization results showed that doping of Au promoted the reduction of both Pt and W at low temperatures and uniform dispersion of Pt on the WO_3 support. Furthermore, more low-valence Pt species were produced on the WO_3 surface after introduction of Au. These changes in electronic properties resulted in enhancement of both glycerol conversion and selectivity for 1,3-propanediol.展开更多
[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表...[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表面张力及其在黄瓜叶面的动态接触角,并开展了防治黄瓜白粉病田间药效试验。[结果]最佳配方为3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺40%(折百)、S043%、D4252%、W071%、乙二醇3%、硅酸镁铝0.4%、黄原胶0.12%、B150.12%、消泡剂X600.3%、水补足。此悬浮剂在有效成分0.27 g a.i./L时的表面张力以及在黄瓜叶面的动态接触角均小于对照药剂40%苯醚甲环唑SC,表明其具有良好的润湿性能。在有效成分0.27 g a.i./L下的防效为88.38%,与对照药剂25%嘧菌酯SC 0.20 g a.i./L相当,且对黄瓜安全。[结论]制备悬浮剂为类白色均匀悬浮液,流动性好,粒径合格,悬浮率稳定在98.5%左右,pH为4.09,黏度为452 mPa·s,入水分散性合格,热储、低温及冻融稳定性良好,未出现沉淀,各项指标均达标,对黄瓜白粉病防效优良,具有良好的开发应用前景。展开更多
基金funded by the National Research Council of Thailand (NRCT)the Second Century Foundation (C2F),Chulalongkorn University,ThailandResearcher Supporting Project RSP2024RR400,King Saud University,Saudi Arabia
文摘The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the catalyst deactivation via sintering,metal leaching,and coking can predominantly occur in the aqueous phase reaction.In this work,the effect of reaction temperature,pressure and second promoter(Cu,Fe,Rh,Mn,Re,Ru,Ir,Sn,B,and P)on catalytic performance and deactivation behaviour of Pt/WOx/-Al2O3 was investigated.When doped with Rh,Mn,Re,Ru,Ir,B,and P,the second promoter boosts catalytic activity by promoting great dispersion of Pt on support and increasing Pt surface area.The increased Bronsted acid sites lead to selective synthesis of 1,3-PDO than 1,2-propanediol(1,2-PDO).The characterization studies of fresh and spent catalysts reveal that the main cause of catalyst deactivation is the Pt sintering,as interpreted based on XRD,CO chemisorption,and TEM analyses.The Pt sintering is affected depending on the second promoter that can either or reduce the interaction between Pt,WO_(χ)/γ and Al_(2)O_(3).As an electron acceptor of Pt in Pt/WO_(χ)/γ-Al_(2)O_(3),Re and Mn as second promoters resulted in increased Pt^(2+) on the catalytic surface,which strengthens the contact between Pt andγ-Al_(2)O_(3) and WO_(χ),resulting in a decrease in Pt sintering.The metal leaching and coking are not affected by the presence of second promoter.The catalyst modified with a second promoter possesses improved catalytic activity and 1,3-PDO production,however the stability continues to remain a challenge.The present work unrav-elled the determining parameters of catalytic activity and deactivation,thus providing a promising pro-tocol toward effective catalysts for glycerol hydrogenolysis.
基金Funding was provided by the National Natural Science Foundation of China(Grant No.22078042).
文摘As an alternative to antibiotics in response to antimicrobial-resistant infections,bacteriophages(phages)are garnering renewed interest in recent years.However,the massive preparation of phage is restricted using traditional pathogens as host cells,which incurs additional costs and contamination.In this study,an opportunistic pathogen,Klebsiella pneumoniae used to convert glycerol to 1,3-propanediol(1,3-PDO),was reused to prepare phage after fermentation.The phage infection showed that the fed-batch fermentation broth containing 71.6 g/L 1,3-PDO can be directly used for preparation of phage with a titer of 1×10^(8) pfu/mL.Then,the two-step salting-out extraction was adopted to remove most impurities,e.g.acetic acid(93.5%),ethanol(91.5%)and cells(99.4%)at the first step,and obtain 1,3-PDO(56.6%)in the top phase as well as phage(97.4%)in the middle phase at the second step.This integrated process provides a cheap and environment-friendly manner for coproduction of 1,3-PDO and phage.
文摘Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3‐propanediol. The calcination temperature played an important role in the structural evolution and catalytic performance of the Cu/SiO2 catalysts, which were systematically characterized by N2 adsorption‐desorption, inductively coupled plasma‐atomic emission spectros‐copy, N2O chemisorption, X‐ray diffraction, Fourier transform infrared spectroscopy, H2 tempera‐ture‐programmed reduction, transmission electron microscopy, and X‐ray photoelectron spectros‐copy. When the Cu/SiO2 catalyst was calcined at 723 K, 90.7%conversion of diethyl malonate and 32.3%selectivity of 1,3‐propanediol were achieved. Compared with Cu/SiO2 catalysts calcined at other temperatures, the enhanced catalytic performance of the Cu/SiO2 catalyst calcined at 723 K can be attributed to better dispersion of copper species, larger cupreous surface area and greater amount of copper phyllosilicate, which results in a higher ratio of Cu+/Cu0. The synergetic effect of Cu0 and Cu+is suggested to be responsible for the optimum activity.
文摘The selective hydrogenolysis of glycerol to 1,3-propanediol(1,3-PDO)is an attractive reaction due to the high demand for valorization of huge excess amounts of glycerol supply as well as the important application of 1,3-PDO in polyester industry.Nevertheless,the formation of 1,3-PDO is thermodynamically less favorable than 1,2-PDO,which necessitates the development of efficient catalysts to manipulate the reaction kinetics towards the 1,3-PDO formation.Among others,Pt-W based catalysts have shown promising activities and selectivities of 1,3-PDO although the reaction mechanism is not well addressed at the molecular level.In this short review,we have compared the performances of different Pt-W based catalysts and discussed the key factors influencing the activity and selectivity.Three possible reaction mechanisms have been discussed in terms of the synergy between Pt and WO_x and the origin of acid sites.Finally,the long-term stability of the Pt-W catalysts has been discussed.We hope this review will provide useful information for the development of more efficient catalysts for this important reaction.
基金CNPq,FAPERJ and CAPES through the PDSE and Program and Human Resources Program 13 of the National Petroleum Agency (ANP-PRH 13)
文摘1,3-Propanediol,traditionally obtained from fossils,has numerous industrial applications,including use in the production of high performance polymers.The microbial production of 1,3-propanediol presents several opportunities,and the final purity grade determines its price and commercial viability.The development of novel separation technology could improve the economic viability of the bioproduction of 1,3-propanediol.Thus,we investigated salting-out extraction as a novel process for 1,3-propanediol recovery from fermentation broth.Initially,a screening for the best salt/solvent combination was conducted and then optimized using the response surface methodology.The solvents studied were methanol,ethanol,isopropanol and acetone,and the salts examined were K_2HPO_4,Na_2CO_3,K_2CO_3,(NH_4)_2SO_4,NaHPO_4,K_3PO_4 and C_6H_5NaO_7.The optimal extraction system consisted of 34 wt%K_3PO_4,28 wt% ethanol,and 38 wt% fermentation broth containing 23.0 g·L^(-1)1,3-propanediol,which gave the highest partition coefficient of 33 and recovery yield of 97%.The results demonstrated that salting-out extraction was a promising method for 1,3-propanediol recovery from fermentation broth.
基金supported by the Natural Science Foundation of China (91545115,21473145,and 21403178)the Postgraduate Basic Innovative Research Program of Xiamen University (201412G001)the Program for Innovative Research Team in Chinese Universities (no.IRT_14R31)
文摘Cu-x-Fe-y/SiO2 catalysts were prepared using urea-assisted sol-gel method. The structure and physicochemical properties of the catalysts were characterized using N-2 adsorption-desorption, transmission electron microscopy, H-2-temperature-programmed reduction, powder X-ray diffraction, and X-ray photoelectron spectroscopy. Compared with monometallic Cu or Fe catalysts, the bimetallic Cu-x-Fe-y/SiO2 catalysts exhibited enhanced catalytic performance for the selective hydrogenation of diethyl malonate to 1,3-propanediol. The bimetallic catalyst with an optimal Cu/Fe atomic ratio of 2 exhibited the highest activity, which yielded 96.3% conversion to diethyl malonate and 93.3% selectivity to 1,3-propanediol under the optimal reaction conditions. Characterization results revealed that interactions between Cu and Fe contributed to the improvement of diethyl malonate conversion and selectivity to 1,3-propanediol. The X-ray photoelectron spectroscopy results revealed that the addition of appropriate amount of Fe species enhanced the reduction of Cu2+ species, thereby increasing the Cu-0 species on the surface of bimetallic catalyst. It led to a better chemisorption capacity of hydrogen and further promoted of the activation of hydrogen molecule. The ethyl acetate temperature-programmed desorption results indicated that the FeOx species provided the additional adsorption sites for substrate molecules, and they activated the C=O bond. The improved catalytic performance of bimetallic Cu-x-Fe-y/SiO2 catalyst was mainly attributed to the synergistic effect between Cu-0 and FeOx species. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Supported by the Scientific Research Project of Marine Public Welfare Industry of China(No.201205020-4)the Knowledge Innovation Project of Chinese Academy of Sciences(No.KSCX2-EW-G-12B)the Administration of Ocean and Fisheries of Guangdong Province(No.GD2012-D01-002)
文摘The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was followed to determine and optimize fermentation conditions for the maximum production of 1,3-PDO using marine-derived Klebsiella pneumoniae HSL4. Four nutritional supplements together with three independent culture conditions were optimized as follows: 29.3 g/L glycerol, 8.0 g/L K2HPO4, 7.6 g/L (NH4)2SO4, 3.0 g/L KH2PO4, pH 7.1, cultivation at 35℃ for 12 h. Under the optimal conditions, a maximum 1,3-PDO concentration of 14.5 g/L, a productivity of 1.21 g/(L'h) and a conversion of glycerol of 0.49 g/g were obtained. In comparison with the control conditions, fermentation under the optimized conditions achieved an increase of 38.8% in 1,3-PDO concentration, 39.0% in productivity and 25.7% in glycerol conversion in flask. This enhancement trend was further confirmed when the fermentation was conducted in a 5-L fermentor. The optimized fermentation conditions could be an important basis for developing low- cost, large-scale methods for industrial production of 1,3-PDO in the future.
文摘As the biodiesel production is rapidly enhanced, the crude glycerol, which is by-product of biodiesel processes, is state of surplus. 1,3-PDO (1,3-propanediol), a valuable monomer of poly(trimethylene terephthalate) (PTT), can be produced from the fermentation process using crude glycerin as a carbon source. For the economic biological production of 1,3-PDO, the low cost and high efficient separation processes is essential. In this study, aqueous two-phase system composed of various hydrophilic alcohols and salt was used as a primary separation step for 1,3-PDO. It was found that the aqueous two-phase systems are easily formed with decreasing of the polarity of alcohols. The extraction efficiency is proportional to the polarity of alcohols. In case of methanol or ethanol/K2HPO4, the extraction efficiency was more than 90%.? It was concluded that the aqueous two-phase extraction using methanol or ethanol/K2HPO4 can be applied? for the primary separation of 1,3-PDO? as an alternative to a conventional primary separation processes.
文摘1,3-Propanediol is a promising renewable resource produced by microbial production. It is mainly used in many synthetic reactions, particularly applied to the polymer synthesis and cosmetics industry. We described here the isolation of strain ZH-1, which has the ability of high production with 1,3-propanediol, from Fenhe River in China. It was classified as a member of K. pneumoniae after the study of phenotypic, physio-logical, biochemical and phylogenetic (16S rDNA). The initial glycerol concentration, fermentation time and pH value of strain ZH-1 were determined to be 50 g·L<sup>-1</sup>, 36 h and 8.0. Under these conditions, the practical yield of 1,3-PD was 18.53 g·L<sup>-1</sup> and a molar yield (mol<sub>1,3-PD</sub> mol<sub>Glycerol</sub>-1</sup> of 1,3-propanediol to glycerol of 0.497. In addition, we found that for the strain ZH-1, the optimum grown pH was 9.0, so we can deter-mine that it is a new member of alkali-resistant strains.
文摘The natural environment is inhabited by many species that exhibit very specific metabolic activities that may find industrial applications. The aim of the study was to select non-pathogenic cultures of bacteria of the genus Clostridium and lactic acid bacteria able to convert glycerol into 1,3-propanediol (1,3-PD). Another aim of this study was to identify the isolates that best produced 1,3-propanediol both from pure and crude glycerol. The most efficient strains identified (Cl. butyricum) were analysed on a bioreactor scale. The aim was to determine temperature conditions on the efficiency and duration of 1,3-PD synthesis. The species Clostridium were identified using amplification of the 16S rRNA coding sequence. A total of 123 isolates (of the genus Clostridium and lactic acid bacteria) were isolated;a vast majority of these were able to synthesize 1,3-PD. The best results were obtained for Cl. butyricum strain DSP1, which was isolated from the rumen of a cow fed with glycerol. The strain efficiency using pure glycerol on bioreactor scale 0.65 mol/mol of glycerol at a temperature of 38℃ and a constant pH of 7.0.
文摘Background:1,3-Propanediol is the starting point of a new-generation polymer with superior properties which can be used in many industrial fields.3-Hydroxypropionaldehyde and lactate have been identified as two important metabolites in the biological route of 1,3-propanediol bioconversion from glycerol.Here,influence of lactate on the inhibition caused by 3-hydroxypropionaldehyde of 1,3-propanediol fermentation by Klebsiella pneumoniae is reported.Methods:The influences of 3-hydroxypropionaldehyde and lactate on 1,3-propanediol production were investigated in normal and lactate pathway deficient strains with different fermentation conditions.Results:By using the strains KG1 and L-type lactate dehydrogenase-deficient mutant(KG1Δldh),the results indicated that an early accumulation of 3-hydroxypropionaldehyde directly inhibited the 1,3-propanediol production rather than through lactate accumulation during the late stage of fermentation.Then,the influence of extra addition of lactate on the late stage of fermentation was investigated,and the inhibitory effect of lactate did not appear.At last,it was found that by reducing 3-hydroxypropionaldehyde accumulation in the early stage of fermentation,the concentration and yield of 1,3-propanediol increased by 18%and 16%,respectively,over the initial experimental levels.Conclusions:An early accumulation of 3-hydroxypropionaldehyde directly decreased the final 1,3-propanediol concentration rather than through lactate accumulation during the late stage of fermentation.
基金supported by the National Natural Science Foundation of China(21690080,21690084,21721004,21673228)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020100)the National Key Projects for Fundamental Research and Development of China(2016YFA0202801)~~
文摘Pt/Au/WO_3 bimetallic catalysts were prepared by impregnation of Pt onto preformed Au/WO_3,obtained by a hexadecyl trmethyl ammonium bromide(CTAB)-assisted one-pot synthesis method.The resulting Pt/Au/WO_3 catalysts exhibited remarkable synergistic effects for selective hydrogenolysis of glycerol to 1,3-propanediol. The characterization results showed that doping of Au promoted the reduction of both Pt and W at low temperatures and uniform dispersion of Pt on the WO_3 support. Furthermore, more low-valence Pt species were produced on the WO_3 surface after introduction of Au. These changes in electronic properties resulted in enhancement of both glycerol conversion and selectivity for 1,3-propanediol.
文摘[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表面张力及其在黄瓜叶面的动态接触角,并开展了防治黄瓜白粉病田间药效试验。[结果]最佳配方为3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺40%(折百)、S043%、D4252%、W071%、乙二醇3%、硅酸镁铝0.4%、黄原胶0.12%、B150.12%、消泡剂X600.3%、水补足。此悬浮剂在有效成分0.27 g a.i./L时的表面张力以及在黄瓜叶面的动态接触角均小于对照药剂40%苯醚甲环唑SC,表明其具有良好的润湿性能。在有效成分0.27 g a.i./L下的防效为88.38%,与对照药剂25%嘧菌酯SC 0.20 g a.i./L相当,且对黄瓜安全。[结论]制备悬浮剂为类白色均匀悬浮液,流动性好,粒径合格,悬浮率稳定在98.5%左右,pH为4.09,黏度为452 mPa·s,入水分散性合格,热储、低温及冻融稳定性良好,未出现沉淀,各项指标均达标,对黄瓜白粉病防效优良,具有良好的开发应用前景。
基金国家自然科学基金联合基金项目(U21A20485)浙江省高等教育“十四五”本科教育教学改革项目(jg20220019)+3 种基金浙江省产学合作协同育人项目(202018)浙江大学2023年度本科教学创新实践项目重点项目(202309)浙江省基础公益研究计划项目(LGG22F030008)浙江大学第一批AI For Education系列实证教学研究项目(202402)。