Objective:To investigate the antifibrotic effects of curcumin in a transverse aortic constriction(TAC)mouse model and elucidate its molecular mechanisms.Methods:Male C57BL/6 mice underwent TAC and received vehicle,low...Objective:To investigate the antifibrotic effects of curcumin in a transverse aortic constriction(TAC)mouse model and elucidate its molecular mechanisms.Methods:Male C57BL/6 mice underwent TAC and received vehicle,low-dose curcumin(50 mg/kg),high-dose curcumin(200 mg/kg),high-dose curcumin plus a scrambled control antagomir,or high-dose curcumin plus anti-miR-29b treatments.Cardiac function was assessed by echocardiography.Fibrosis was evaluated by histology,collagen volume fraction,and hydroxyproline content.Expression of miR-29b,HDAC4,and fibrosis-related markers(Col1a1,Col3a1,TGF-β1)was measured by quantitative RT-PCR and Western blotting assays.Myocardial procollagen type I carboxy-terminal propeptide was determined by ELISA,and HDAC4-specific enzymatic activity was assayed using a fluorogenic kit.Results:Curcumin improved cardiac function,reduced fibrosis,restored miR-29b expression,and suppressed HDAC4 expression and activity in a dose-dependent manner.Furthermore,curcumin decreased myocardial procollagen type I carboxy-terminal propeptide levels,confirming reduced collagen synthesis.Anti-miR-29b administration partially abrogated the antifibrotic and cardioprotective effects of curcumin.Conclusions:Curcumin attenuates pressure overload-induced cardiac fibrosis and dysfunction in a TAC mouse model via modulation of the miR-29b/HDAC4 axis and suppression of collagen synthesis.展开更多
基金supported by China International Medical Foundation(Z-2019-42-1908-4)Natural Science Basic Research Program of Shaanxi Province(2019JM-440).
文摘Objective:To investigate the antifibrotic effects of curcumin in a transverse aortic constriction(TAC)mouse model and elucidate its molecular mechanisms.Methods:Male C57BL/6 mice underwent TAC and received vehicle,low-dose curcumin(50 mg/kg),high-dose curcumin(200 mg/kg),high-dose curcumin plus a scrambled control antagomir,or high-dose curcumin plus anti-miR-29b treatments.Cardiac function was assessed by echocardiography.Fibrosis was evaluated by histology,collagen volume fraction,and hydroxyproline content.Expression of miR-29b,HDAC4,and fibrosis-related markers(Col1a1,Col3a1,TGF-β1)was measured by quantitative RT-PCR and Western blotting assays.Myocardial procollagen type I carboxy-terminal propeptide was determined by ELISA,and HDAC4-specific enzymatic activity was assayed using a fluorogenic kit.Results:Curcumin improved cardiac function,reduced fibrosis,restored miR-29b expression,and suppressed HDAC4 expression and activity in a dose-dependent manner.Furthermore,curcumin decreased myocardial procollagen type I carboxy-terminal propeptide levels,confirming reduced collagen synthesis.Anti-miR-29b administration partially abrogated the antifibrotic and cardioprotective effects of curcumin.Conclusions:Curcumin attenuates pressure overload-induced cardiac fibrosis and dysfunction in a TAC mouse model via modulation of the miR-29b/HDAC4 axis and suppression of collagen synthesis.