CO_(2) Water-Alternating-Gas(CO_(2)-WAG)injection is not only a method to enhance oil recovery but also a feasible way to achieve CO_(2) sequestration.However,inappropriate injection strategies would prevent the attai...CO_(2) Water-Alternating-Gas(CO_(2)-WAG)injection is not only a method to enhance oil recovery but also a feasible way to achieve CO_(2) sequestration.However,inappropriate injection strategies would prevent the attainment of maximum oil recovery and cumulative CO_(2) storage.Furthermore,the optimization of CO_(2)-WAG is computationally expensive as it needs to frequently call the compositional simulation model that involves various CO_(2) storage mechanisms.Therefore,the surrogate-assisted evolutionary optimization is necessary,which replaces the compositional simulator with surrogate models.In this paper,a surrogate-based multi-objective optimization algorithm assisted by the single-objective pre-search method is proposed.The results of single-objective optimization will be used to initialize the solutions of multi-objective optimization,which accelerates the exploration of the entire Pareto front.In addition,a convergence criterion is also proposed for the single-objective optimization during pre-search,and the gradient of surrogate models is adopted as the convergence criterion.Finally,the method proposed in this work is applied to two benchmark reservoir models to prove its efficiency and correctness.The results show that the proposed algorithm achieves a better performance than the conventional ones for the multi-objective optimization of CO_(2)-WAG.展开更多
Low-salinity water(LSW)and CO_(2) could be combined to perform better in a hydrocarbon reservoir due to their synergistic advantages for enhanced oil recovery(EOR);however,its microscopic recovery mechanisms have not ...Low-salinity water(LSW)and CO_(2) could be combined to perform better in a hydrocarbon reservoir due to their synergistic advantages for enhanced oil recovery(EOR);however,its microscopic recovery mechanisms have not been well understood due to the nature of these two fluids and their physical reactions in the presence of reservoir fluids and porous media.In this work,well-designed and inte-grated experiments have been performed for the first time to characterize the in-situ formation of micro-dispersions and identify their EOR roles during a LSW-alternating-CO_(2)(CO_(2)-LSWAG)process under various conditions.Firstly,by measuring water concentration and performing the Fourier transform infrared spectroscopy(FT-IR)analysis,the in-situ formation of micro-dispersions induced by polar and acidic materials was identified.Then,displacement experiments combining with nuclear magnetic resonance(NMR)analysis were performed with two crude oil samples,during which wettability,interfacial tension(IFT),CO_(2) dissolution,and CO_(2) diffusion were quantified.During a CO_(2)-LSWAG pro-cess,the in-situ formed micro-dispersions dictate the oil recovery,while the presence of clay minerals,electrical double-layer(EDL)expansion and multiple ion exchange(MIE)are found to contribute less.Such formed micro-dispersions are induced by CO_(2) via diffusion to mobilize the CO_(2)-diluted oil,alter the rock wettability towards more water-wet,and minimize the density contrast between crude oil and water.展开更多
基金financial support provided by the National Key R&D Program of China(No.2023YFB4104203 and No.2022YFE0129900)financial support from the National Natural Science Foundation of China(No.U22B2075)The funding from the Shandong Postdoctoral Science Foundation(No.SDBX2023017)is also greatly appreciated.
文摘CO_(2) Water-Alternating-Gas(CO_(2)-WAG)injection is not only a method to enhance oil recovery but also a feasible way to achieve CO_(2) sequestration.However,inappropriate injection strategies would prevent the attainment of maximum oil recovery and cumulative CO_(2) storage.Furthermore,the optimization of CO_(2)-WAG is computationally expensive as it needs to frequently call the compositional simulation model that involves various CO_(2) storage mechanisms.Therefore,the surrogate-assisted evolutionary optimization is necessary,which replaces the compositional simulator with surrogate models.In this paper,a surrogate-based multi-objective optimization algorithm assisted by the single-objective pre-search method is proposed.The results of single-objective optimization will be used to initialize the solutions of multi-objective optimization,which accelerates the exploration of the entire Pareto front.In addition,a convergence criterion is also proposed for the single-objective optimization during pre-search,and the gradient of surrogate models is adopted as the convergence criterion.Finally,the method proposed in this work is applied to two benchmark reservoir models to prove its efficiency and correctness.The results show that the proposed algorithm achieves a better performance than the conventional ones for the multi-objective optimization of CO_(2)-WAG.
基金support by The CO_(2) Flooding and Storage Safety Monitoring Technology(Grant 2023YFB4104200)The Dynamic Evolution of Marine CO_(2) Geological Sequestration Bodies and The Mechanism of Sequestration Efficiency Enhancement(Grant U23B2090)The Efficient Development Technology and Demonstration Project of Offshore CO_(2) Flooding(Grant KJGG-2022-12-CCUS-0203).
文摘Low-salinity water(LSW)and CO_(2) could be combined to perform better in a hydrocarbon reservoir due to their synergistic advantages for enhanced oil recovery(EOR);however,its microscopic recovery mechanisms have not been well understood due to the nature of these two fluids and their physical reactions in the presence of reservoir fluids and porous media.In this work,well-designed and inte-grated experiments have been performed for the first time to characterize the in-situ formation of micro-dispersions and identify their EOR roles during a LSW-alternating-CO_(2)(CO_(2)-LSWAG)process under various conditions.Firstly,by measuring water concentration and performing the Fourier transform infrared spectroscopy(FT-IR)analysis,the in-situ formation of micro-dispersions induced by polar and acidic materials was identified.Then,displacement experiments combining with nuclear magnetic resonance(NMR)analysis were performed with two crude oil samples,during which wettability,interfacial tension(IFT),CO_(2) dissolution,and CO_(2) diffusion were quantified.During a CO_(2)-LSWAG pro-cess,the in-situ formed micro-dispersions dictate the oil recovery,while the presence of clay minerals,electrical double-layer(EDL)expansion and multiple ion exchange(MIE)are found to contribute less.Such formed micro-dispersions are induced by CO_(2) via diffusion to mobilize the CO_(2)-diluted oil,alter the rock wettability towards more water-wet,and minimize the density contrast between crude oil and water.