In this paper, the existence, uniqueness, and asymptotic behavior of the solution of the density evolution equation for M/M/∞ model was studied by the semigroup theory of linear operators.
It is proved that a system under compact perturbation cannot be uniformly exponentially stable for an isometric C0-semigroup or a C0-group with polynomial growth for negative time in a Banach space. The results extend...It is proved that a system under compact perturbation cannot be uniformly exponentially stable for an isometric C0-semigroup or a C0-group with polynomial growth for negative time in a Banach space. The results extend and improve the corresponding results of previous literature.展开更多
This paper considers the differentiability of C 0 semigroups with respect to (w.r.t.) parameters contained in their infinitesimal generators.It is proved that the generalized continuity and strong differentiability ...This paper considers the differentiability of C 0 semigroups with respect to (w.r.t.) parameters contained in their infinitesimal generators.It is proved that the generalized continuity and strong differentiability of their infinitesimal generators w.r.t.parameters imply the differentiability of the C 0 semigroups.The results are applied to the differentiability of the solution of a linear delay differential equation w.r.t.its delays.展开更多
In this paper,we study complex symmetric C0-semigroups on the Bergman space A^2(C+) of the right half-plane C+.In contrast to the classical case,we prove that the only involutive composition operator on A^2(C+) is the...In this paper,we study complex symmetric C0-semigroups on the Bergman space A^2(C+) of the right half-plane C+.In contrast to the classical case,we prove that the only involutive composition operator on A^2(C+) is the identity operator,and the class of J-symmetric composition operators does not coincide with the class of normal composition operators.In addition,we divide semigroups{φt}of linear fractional self-maps of C+into two classes.We show that the associated composition operator semigroup{Tt}is strongly continuous and identify its infinitesimal generator.As an application,we characterize Jσ-symmetric C0-semigroups of composition operators on A^2(C+).展开更多
In this paper, we consider the conditions of asymptotic expansion for G0- semigroups and obtain a general result, Finally, we give an application to neutron trans-port equation,
文摘In this paper, the existence, uniqueness, and asymptotic behavior of the solution of the density evolution equation for M/M/∞ model was studied by the semigroup theory of linear operators.
基金Project of Sichuan Provincial Science and Technology Department (No.2007J13-006)
文摘It is proved that a system under compact perturbation cannot be uniformly exponentially stable for an isometric C0-semigroup or a C0-group with polynomial growth for negative time in a Banach space. The results extend and improve the corresponding results of previous literature.
文摘This paper considers the differentiability of C 0 semigroups with respect to (w.r.t.) parameters contained in their infinitesimal generators.It is proved that the generalized continuity and strong differentiability of their infinitesimal generators w.r.t.parameters imply the differentiability of the C 0 semigroups.The results are applied to the differentiability of the solution of a linear delay differential equation w.r.t.its delays.
文摘In this paper,we study complex symmetric C0-semigroups on the Bergman space A^2(C+) of the right half-plane C+.In contrast to the classical case,we prove that the only involutive composition operator on A^2(C+) is the identity operator,and the class of J-symmetric composition operators does not coincide with the class of normal composition operators.In addition,we divide semigroups{φt}of linear fractional self-maps of C+into two classes.We show that the associated composition operator semigroup{Tt}is strongly continuous and identify its infinitesimal generator.As an application,we characterize Jσ-symmetric C0-semigroups of composition operators on A^2(C+).
文摘In this paper, we consider the conditions of asymptotic expansion for G0- semigroups and obtain a general result, Finally, we give an application to neutron trans-port equation,