Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and st...Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.展开更多
Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when ...Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when the reinforced phase volume fraction of Ti_(2)AlC was 20%,three-dimensional interpenetrating network structures were formed in the composites.Above 20%,Ti_(2)AlC phase in the composites accumulated and grew to form thick skeletal networks.The microplastic deformation behavior of Ti_(2)AlC phase,such as kink band and delamination,improved the fracture toughness of the composites.Comparative analysis indicated that the uniform and small interconnecting network structures could further reinforce the composites.The bending strengths of composites prepared with 20 vol.%Ti_(2)AlC reached(900.9±45.0)MPa,which was 25.5% higher than that of TiAl matrix.In general,the co-continuous Ti_(2)AlC/TiAl composite with excellent mechanical properties can be prepared by powder metallurgy method.展开更多
The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation...The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.展开更多
Hot compression behavior of Al6061/Al2O3nanocomposite was investigated in the temperature range of350-500°C andthe strain rate range of0.0005-0.5s-1,in order to determine the optimum conditions for the hot workab...Hot compression behavior of Al6061/Al2O3nanocomposite was investigated in the temperature range of350-500°C andthe strain rate range of0.0005-0.5s-1,in order to determine the optimum conditions for the hot workability of nanocomposite.Theactivation energy of285kJ/mol for the hot compression test is obtained by using hyperbolic sine function.By means of dynamicmaterial model(DMM)and the corresponding processing map,safe zone for the hot workability of AA6061/Al2O3is recognized attemperature of450°C and strain rate of0.0005s-1and at temperature of500°C and the strain rate range of0.0005-0.5s-1,with themaximum power dissipation efficiency of38%.Elongated and kinked grains are observed at400°C and strain rate of0.5s-1due tothe severe deformation.展开更多
The constitutive model was developed to describe the relationship among flow stress,strain,strain rate,and deformation temperature completely,based on the characteristics of flow stress curves for a new kind of metast...The constitutive model was developed to describe the relationship among flow stress,strain,strain rate,and deformation temperature completely,based on the characteristics of flow stress curves for a new kind of metastable β Ti2448 titanium alloy from isothermal hot compression tests,in a wide range of temperatures(1023-1123 K) and strain rates(63-0.001 s-1).During this process,the adopted hyperbolic sine function based on the unified viscoplasticity theory was used to model the flow behavior of alloy undergoing flow softening caused by dynamic recovery(DRV) at high strain rates(≥1 s-1).The standard Avrami equation was adopted to represent the softening mechanism attributed to dynamic recrystallization(DRX) at low strain rates(1 s-1).Additionally,the material constants were determined by optimization strategy,which is a new method to solve the nonlinear constitutive equation.The stress—strain curves predicted by the developed constitutive model agree well with the experimental results,which con-rms that the developed constitutive model can give an accurate estimate of the-ow stress of Ti2448 titanium alloy and provide an effective method to model the flow behavior of metastable β titanium alloys during hot deformation.展开更多
Finite element analysis was used to investigate the effects of whisker misalignment on the hot compressive deformation behavior of whisker-reinforced composites. The simulation provided the evolution of the stress fie...Finite element analysis was used to investigate the effects of whisker misalignment on the hot compressive deformation behavior of whisker-reinforced composites. The simulation provided the evolution of the stress field of the composites and the whisker rotation process. It is found that with increasing the angle of whisker misalignment the whisker rotation angle decreases. Meanwhile, the mechanical behaviors of the composites such as work hardening or strain softening are affected by the whisker orientation and rotation during the hot compressive deformation. The predicted results are in agreement with the experimental results.展开更多
To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most diffe...To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most different efforts, but the major applications suggest mechanical bending and compression tests because the insulation can be applied on roofs of homes, liners similar to, in the form of plates. Thus, the product is continually flexed. When the material is used on a floor, it suffers constant compressions over its use. For tests performed in this study, we used the ASTM D695-96 for compression, an example of literature. Using such a standard test, specimens were produced for compression test, with specimens made of cylindrical shapes, respecting the condition that the height of the specimen corresponds to twice the diameter of the base. Polyurethane castor without charge vermiculite and mass loads of 10%, 15% and 20% matrix: four specimens for each type of material were produced. The composites were tested in a universal testing machine at a speed of 2 mm/s. The results are average values of four test samples, and initially show the behavior of castor oil polyurethane during the compression test, which is detailed in the stress versus strain curve. The achieved results are promising, and detailed in this paper.展开更多
The use of bio-based biomass construction materials has the advantage of helping to reduce fossil energy demand,protecting the environment from carbon dioxide emission and reducing the production of non-degradable was...The use of bio-based biomass construction materials has the advantage of helping to reduce fossil energy demand,protecting the environment from carbon dioxide emission and reducing the production of non-degradable waste.This paper used resin-modified soy protein(SP)adhesive to combine rice straw stalks,and made straw-soy protein composites(SSPC)material.The physical properties,compressive behavior and stability during wetting drying cycles of SSPC were measured.Due to water evaporation,the SP matrix is full of connected pores,resulting to its physical properties of small density,high shrinkage ratio and low thermal conductivity,which are 0.24 g/cm^(3),16.2%,and 0.065 W/(m•K),respectively.Adding straw is helpful to the physical properties of SP matrix,leading to an obvious decrease in shrinkage ratio and thermal conductivity of SSPC,which are 8.51%and 0.075 W/m•K.Furthermore,the compressive load-displacement curves of SSPC groups divide into two types:divergent and convergent.The compressive strength of divergent samples is decided by the critical displacement determined according to the convergent specimens.It shows that straw stalk proves the positive effect on the compressive property of SP matrix.As to the mass of SSPC samples during the wetting drying cycles,it drops apparently in the initial three cycles,and becomes negligible from the fifth cycle,meaning that the stability of SSPC during wetting drying cyclic process is quite good.The research result would be helpful for using SSPC as building material,especially as thermal insulation material.展开更多
基金Fundamental Research Funds for the Central Universities (N2107001)China Postdoctoral Science Foundation (2019M651129, 2019TQ0053)National Natural Science Foundation of China (52001060)。
基金Project(51271076)supported by the National Natural Science Foundation of China
文摘Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.
基金the financial supports from the National Natural Science Foundation of China(No.52065009)the Joint Funds of the Science and Technology Foundation of Guizhou Province,China(No.20157219)the Science and Technology Planning Project of Guizhou Province,China(No.20191069).
文摘Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when the reinforced phase volume fraction of Ti_(2)AlC was 20%,three-dimensional interpenetrating network structures were formed in the composites.Above 20%,Ti_(2)AlC phase in the composites accumulated and grew to form thick skeletal networks.The microplastic deformation behavior of Ti_(2)AlC phase,such as kink band and delamination,improved the fracture toughness of the composites.Comparative analysis indicated that the uniform and small interconnecting network structures could further reinforce the composites.The bending strengths of composites prepared with 20 vol.%Ti_(2)AlC reached(900.9±45.0)MPa,which was 25.5% higher than that of TiAl matrix.In general,the co-continuous Ti_(2)AlC/TiAl composite with excellent mechanical properties can be prepared by powder metallurgy method.
基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2018-ZX04044001-008)the National Natural Science Foundation of China(No.52075328).
文摘The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.
文摘Hot compression behavior of Al6061/Al2O3nanocomposite was investigated in the temperature range of350-500°C andthe strain rate range of0.0005-0.5s-1,in order to determine the optimum conditions for the hot workability of nanocomposite.Theactivation energy of285kJ/mol for the hot compression test is obtained by using hyperbolic sine function.By means of dynamicmaterial model(DMM)and the corresponding processing map,safe zone for the hot workability of AA6061/Al2O3is recognized attemperature of450°C and strain rate of0.0005s-1and at temperature of500°C and the strain rate range of0.0005-0.5s-1,with themaximum power dissipation efficiency of38%.Elongated and kinked grains are observed at400°C and strain rate of0.5s-1due tothe severe deformation.
文摘The constitutive model was developed to describe the relationship among flow stress,strain,strain rate,and deformation temperature completely,based on the characteristics of flow stress curves for a new kind of metastable β Ti2448 titanium alloy from isothermal hot compression tests,in a wide range of temperatures(1023-1123 K) and strain rates(63-0.001 s-1).During this process,the adopted hyperbolic sine function based on the unified viscoplasticity theory was used to model the flow behavior of alloy undergoing flow softening caused by dynamic recovery(DRV) at high strain rates(≥1 s-1).The standard Avrami equation was adopted to represent the softening mechanism attributed to dynamic recrystallization(DRX) at low strain rates(1 s-1).Additionally,the material constants were determined by optimization strategy,which is a new method to solve the nonlinear constitutive equation.The stress—strain curves predicted by the developed constitutive model agree well with the experimental results,which con-rms that the developed constitutive model can give an accurate estimate of the-ow stress of Ti2448 titanium alloy and provide an effective method to model the flow behavior of metastable β titanium alloys during hot deformation.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50071008).
文摘Finite element analysis was used to investigate the effects of whisker misalignment on the hot compressive deformation behavior of whisker-reinforced composites. The simulation provided the evolution of the stress field of the composites and the whisker rotation process. It is found that with increasing the angle of whisker misalignment the whisker rotation angle decreases. Meanwhile, the mechanical behaviors of the composites such as work hardening or strain softening are affected by the whisker orientation and rotation during the hot compressive deformation. The predicted results are in agreement with the experimental results.
文摘To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most different efforts, but the major applications suggest mechanical bending and compression tests because the insulation can be applied on roofs of homes, liners similar to, in the form of plates. Thus, the product is continually flexed. When the material is used on a floor, it suffers constant compressions over its use. For tests performed in this study, we used the ASTM D695-96 for compression, an example of literature. Using such a standard test, specimens were produced for compression test, with specimens made of cylindrical shapes, respecting the condition that the height of the specimen corresponds to twice the diameter of the base. Polyurethane castor without charge vermiculite and mass loads of 10%, 15% and 20% matrix: four specimens for each type of material were produced. The composites were tested in a universal testing machine at a speed of 2 mm/s. The results are average values of four test samples, and initially show the behavior of castor oil polyurethane during the compression test, which is detailed in the stress versus strain curve. The achieved results are promising, and detailed in this paper.
基金supported by 2024 Beijing Forestry University Student Innovation and Entrepreneurship Training Program(Grant Number:X202410022059).
文摘The use of bio-based biomass construction materials has the advantage of helping to reduce fossil energy demand,protecting the environment from carbon dioxide emission and reducing the production of non-degradable waste.This paper used resin-modified soy protein(SP)adhesive to combine rice straw stalks,and made straw-soy protein composites(SSPC)material.The physical properties,compressive behavior and stability during wetting drying cycles of SSPC were measured.Due to water evaporation,the SP matrix is full of connected pores,resulting to its physical properties of small density,high shrinkage ratio and low thermal conductivity,which are 0.24 g/cm^(3),16.2%,and 0.065 W/(m•K),respectively.Adding straw is helpful to the physical properties of SP matrix,leading to an obvious decrease in shrinkage ratio and thermal conductivity of SSPC,which are 8.51%and 0.075 W/m•K.Furthermore,the compressive load-displacement curves of SSPC groups divide into two types:divergent and convergent.The compressive strength of divergent samples is decided by the critical displacement determined according to the convergent specimens.It shows that straw stalk proves the positive effect on the compressive property of SP matrix.As to the mass of SSPC samples during the wetting drying cycles,it drops apparently in the initial three cycles,and becomes negligible from the fifth cycle,meaning that the stability of SSPC during wetting drying cyclic process is quite good.The research result would be helpful for using SSPC as building material,especially as thermal insulation material.