A fluid sensor based on the surface transverse wave (STW) delay line on ST-cut quartz has been developed and tested in a large number of fluids with different viscosity and permittivity levels.Influence of fluid mech...A fluid sensor based on the surface transverse wave (STW) delay line on ST-cut quartz has been developed and tested in a large number of fluids with different viscosity and permittivity levels.Influence of fluid mechanical and electrical properties on the sensor's response has been determined and the sensor's performance has been compared with a bulk acoustic wave (BAW) viscosity sensor.The result shows that the viscosity sensitivity of the developed STW sensor represented by the signal to noise ratio is lower than that of a 5 MHz BAW sensor.Applications of the sensor in detecting the quality of industrial fluids are discussed.展开更多
We report the first use of organic semiconductors (OSCs)-coated PAN nanofibrous mats as highly responsive fluorescence quenching-based chemosensors for 2,4,6-trinitrotoluene (TNT) and H2O2 detection in vapor phase...We report the first use of organic semiconductors (OSCs)-coated PAN nanofibrous mats as highly responsive fluorescence quenching-based chemosensors for 2,4,6-trinitrotoluene (TNT) and H2O2 detection in vapor phase. Conjugated polymers, poly(triphenylaminealt-biphenylene vinylene) (TPA- PBPV), and small organic molecules, l-horonic-ester pyrene and 1,6-bisboron-ester pyrene, were coated onto the nanofibers fabricated by electrospinning. By introducing the nanofibers structure, a 9-fold fluorescence intensity enhancement and a 14-fold sensitivity enhancement were achieved, which could be attributed to its high area-to-volume ratio, excellent gas permeability, and more importantly, the evanescent-wave effect occurred once the diameters of the fibers were small enough. Since the organic semiconductors coated onto the nanofibrous mats could be replaced by other functional materials, the nanofibers-enhanced detection strategies could be extended to more general domains including chemical and environmental detection.展开更多
The interdigital transducer (IDT) can excite Lamb wave in a piezoelectric plate loading with a liquid layer, and the phase velocity of Lamb wave is associated with the properties of the liquid layer. In this paper, th...The interdigital transducer (IDT) can excite Lamb wave in a piezoelectric plate loading with a liquid layer, and the phase velocity of Lamb wave is associated with the properties of the liquid layer. In this paper, the concept of effective permittivity is introduced to study the Lamb wave's potential application in liquid sensing. Considering the measuring of ideal nonviscous liquid, the sensors array is designed to sense the density and the dielectric constant of the liquid layer simultaneously. Using LiNbO3 as piezoelectric material, in order to improve the sensors array sensitivity and the electro-mechanical coupling coefficient, the optimized results including plate thicknesses and cut orientations are presented by numerical simulation. These studies show that the Lamb wave sensors array can be potential in liquid sensing.展开更多
ZnO films on R-sapphire substrates are prepared and characterized by x-ray diffraction and scanning electron microscopy, which indicate that the thin films are well crystallized with (1120) texture. Love wave and Ra...ZnO films on R-sapphire substrates are prepared and characterized by x-ray diffraction and scanning electron microscopy, which indicate that the thin films are well crystallized with (1120) texture. Love wave and Rayleigh wave are used for fabrications of humidity sensors, which are excited in [1100] and [0001] directions of the (1120) ZnO piezoelectric films, respectively. The experimental results show that both kinds of sensors have good humidity response and repeatability, and the performances of the Love wave sensors are better than those of the Rayleigh wave sensors at room temperature. Moreover, the theoretical calculations of the mass sensitivity of the sensors are a/so carried out and the calculated results are in good agreement with the experimental measurements.展开更多
In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a ...In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a specifically designed test setup.The energy attenuation of stress waves was measured by the relative index between the output voltage of sensors and the excitation voltage at the actuator.Based on the experimental results of concrete cube and cylinder specimens,the effect of excitation frequencies,excitation amplitude,wave propagation paths and the curing age on the output signals of sensors are evaluated.The results show that the relative voltage attenuation coefficient RVAC is an effective indicator for measuring the attenuation of stress waves through the interior of concrete.展开更多
Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into ...Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.展开更多
Investigation of the propagation of the wave in SAW sensors is a basis for the research and design of the sensors. With the advance of the sensor, both the effect of environment on the surface ply and the geometry of ...Investigation of the propagation of the wave in SAW sensors is a basis for the research and design of the sensors. With the advance of the sensor, both the effect of environment on the surface ply and the geometry of waveguide are complicated. To consider the complication, a model with gradient surface ply and multilayer waveguide of SH wave propagation in sensor is proposed. The equation of wave velocity is derived by a transfer matrix method. Through the equation, the function of wave velocity increment via the change of parameters in the surface ply is obtained. The effect of the inhomogeneity on the function is also studied. Finally, some influencing factors of the behavior of the sensor are discussed.展开更多
A new type of the surface acoustic wave (SAW) sensor system was delivered. Urease from several kinds of plant seeds was extracted with different extracting solvents. The urease activity, Michaelis constant and other k...A new type of the surface acoustic wave (SAW) sensor system was delivered. Urease from several kinds of plant seeds was extracted with different extracting solvents. The urease activity, Michaelis constant and other kinetic parameters were estimated for the first time by means of the new device-SAW sensor system. Some factors such as pH, temperature, activators and inhibitors are also discussed. The method can be applied to the determination of urea content in human urine and the experimental results consist with those reported.展开更多
Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on...Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on defect testing results by using stress wave in terms of image fitting degree and error rate. The results showed that for logs with diameter ranging from 20 to 40 cm, at least 12 sensors were needed to meet the requirement which ensure a high testing accuracy of roughly 90% of fitness with 0.1 of error rate. And 10 sensors were recommended to judge the possible locations of defects and 6 sensors were sufficient to decide whether there were defects or not.展开更多
Summary: A new kind of biosensor for immunology was developed by ultrasonic technique and LB membrane. A double delay-line resonator was made by using ST-cut quartz crystal with working frequency of 149. 7 MHz. Then a...Summary: A new kind of biosensor for immunology was developed by ultrasonic technique and LB membrane. A double delay-line resonator was made by using ST-cut quartz crystal with working frequency of 149. 7 MHz. Then a layer of LB membrane was covered on it. When anti-IgM anti- body of various concentrations was added to it, the sensor can be used to detect IgM antigen. The biosensor was highly sensitive, small and light. The experimental results showed that the working frequency change of the sensor was proportional to the concentration of antibody with its dilution ratio between 1: 10000 and 1: 100. It was also first observed that the frequency curve of the sen- sor resulting from the reaction of IgM antigen and antibody undulated in the experiment.展开更多
This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive in...This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive inspection technique. Full scale mockups that simulated shell and liner regions of interest in the containment of both a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) were constructed. Inspections were performed on the mock-ups in three stages to discern the signal attenuation caused by flaws and caused by concrete in the structures. The effect of concrete being in close proximity to the liner and shell was determined, and the capability to detect and size flaws via this GW technique was evaluated.展开更多
We report for the first time a cleavage phenomenon in the resonant peak of a piezoelectric quartz crystal(PQC) in liquid phase.In the presence of a strong longitudinal wave effect,an additional resonant peak appears i...We report for the first time a cleavage phenomenon in the resonant peak of a piezoelectric quartz crystal(PQC) in liquid phase.In the presence of a strong longitudinal wave effect,an additional resonant peak appears in the conductance-frequency curve.With gradually increasing liquid density,the additional peak moves from low to high frequency region then disappears.The frequency of the additional resonant peak is sensitive to the change in liquid density.The frequency shift of the additional peak is linear with the liquid density in a given range.For a 5 MHz PQC with a reflection distance of 16 mm for longitudinal wave,the sensitivity to liquid density is 2.61×10^6 Hz g^-1 cm^3.The overlap between the primary resonant peak and the additional resonant peak causes a decrease in the intensity of the former and an increase in the intensity of the latter.In a combined impedance analysis method,the changes in surface mass loading,density and viscosity of the liquid were monitored simultaneously by a PQC sensor.展开更多
Marine resource exploitation and marine cargo transportation were increasingly frequent. Due to the impact of the marine environment, ships or platforms were affected. In this paper, a servo electric cylinder was used...Marine resource exploitation and marine cargo transportation were increasingly frequent. Due to the impact of the marine environment, ships or platforms were affected. In this paper, a servo electric cylinder was used as a wave compensation actuator to design a wave compensation system. The laser sensor was used to measure the displacement in the direction of the heave platform, and the obtained displacement was applied to the wave compensation in the heave direction to verify the feasibility of the compensation system.展开更多
Based on spectrum principle and analyzing the infrared absorption spectrum ofmethane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributedfeedback laser diode) in 1 300 nm waveban...Based on spectrum principle and analyzing the infrared absorption spectrum ofmethane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributedfeedback laser diode) in 1 300 nm waveband is used as illuminant and phase-detecting technology isused to carry out harmonic wave detecting the concentration of methane. The sensitivity can arriveat 10^(-5). Experiments results show that the performance targets of the sensor such as sensitivitycan basically satisfy the requests of methane detection.展开更多
Bloch surface waves(BSWs) are excited in one-dimensional photonic crystals(Ph Cs) terminated by a graphene monolayer under the Kretschmann configuration. The field distribution and reflectance spectra are numerica...Bloch surface waves(BSWs) are excited in one-dimensional photonic crystals(Ph Cs) terminated by a graphene monolayer under the Kretschmann configuration. The field distribution and reflectance spectra are numerically calculated by the transverse magnetic method under transfer-matrix polarization, while the sensitivity is analyzed and compared with those of the surface plasmon resonance sensing method. It is found that the intensity of magnetic field is considerably enhanced in the region of the terminated layer of the multilayer stacks, and that BSW resonance appears only in the interface of the graphene and solution. Influences of the graphene layers and the thickness of a unit cell in Ph Cs on the reflectance are studied as well. In particular, by analyzing the performance of BSW sensors with the graphene monolayer,the wavelength sensitivity of the proposed sensor is 1040 nm/RIU whereas the angular sensitivity is 25.1°/RIU. In addition,the maximum of figure of merit can reach as high as 3000 RIU^-1. Thus, by integrating graphene in a simple Kretschmann structure, one can obtain an enhancement of the light–graphene interaction, which is prospective for creating label-free,low-cost and high-sensitivity optical biosensors.展开更多
We have derived a general formula for sensitivity optimization of gravimetric sensors and have used it to design a high sensitivity gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) wavegui...We have derived a general formula for sensitivity optimization of gravimetric sensors and have used it to design a high sensitivity gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) waveguide layer on (1 -x)Pb(Znl/3Nbz/3)O3-xPbTiO3 (PZN-xPT) single crystal substrate with the carbon fibers parallel to the xj and x2 axes, respectively. The normalized maximum sensitivity (|sfm|λ)max exhibits an increasing tendency with the decrease of (h/λ)opt and the maximum sensitivity (|sfm|λ)max increases with the elastic constant c6E6 of the piezoelectric substrate material. For the CFEC/[011]c poled PZN-7%PT single crystal sensor configuration, with the carbon fibers parallel to the xa axis at λ = 24 ktm, the maximum sensitivity |sfm|max can reach as high as 1156 cmZ/g, which is about three times that of a traditional SiO2/ST quartz structure gravimetric sensor. The better design selection is to have the carbon fibers parallel to the direction of propagation of Love wave in order to obtain the best sensitivity.展开更多
A novel wireless and passive surface acoustic wave(SAW)sensor is developed for measuring temperature and pressure.The sensor has two single-port resonators on a substrate.One resonator,acting as the temperature sensor...A novel wireless and passive surface acoustic wave(SAW)sensor is developed for measuring temperature and pressure.The sensor has two single-port resonators on a substrate.One resonator,acting as the temperature sensor,is located at the fixed end without pressure deformation,and the other one,acting as the pressure sensor,is located at the free end to detect pressure changes due to substrate deformation.Pressure at the free end bends the cantilever,causing a relative change in the acoustic propagation characteristics of the SAW traveling along the surface of the substrate and a relative change in the resonant frequency of the resulting signal.The temperature acts on the entire substrate,affecting the propagation speed of the SAW on the substrate and directly affecting the resonant frequency characteristic parameters.The temperature and pressure performance of this new antenna-connected sensor is tested by using a network analyzer,a constant temperature heating station,and a force gauge.A temperature sensitivity of 1.5015 kHz/℃and a pressure sensitivity of 10.6 kHz/gf at the ambient temperature have been observed by wireless measurements.This work should result in practical engineering applications for high-temperature devices.展开更多
文摘A fluid sensor based on the surface transverse wave (STW) delay line on ST-cut quartz has been developed and tested in a large number of fluids with different viscosity and permittivity levels.Influence of fluid mechanical and electrical properties on the sensor's response has been determined and the sensor's performance has been compared with a bulk acoustic wave (BAW) viscosity sensor.The result shows that the viscosity sensitivity of the developed STW sensor represented by the signal to noise ratio is lower than that of a 5 MHz BAW sensor.Applications of the sensor in detecting the quality of industrial fluids are discussed.
基金the financial support from the National Natural Science Foundation of China(Nos.51003118, 21273267)the Research Programs from the Ministry of Science and Technology of China(No.2012BAK06B03)+1 种基金the Shanghai Science and Technology Committee(No.11JC1414700)the Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University
文摘We report the first use of organic semiconductors (OSCs)-coated PAN nanofibrous mats as highly responsive fluorescence quenching-based chemosensors for 2,4,6-trinitrotoluene (TNT) and H2O2 detection in vapor phase. Conjugated polymers, poly(triphenylaminealt-biphenylene vinylene) (TPA- PBPV), and small organic molecules, l-horonic-ester pyrene and 1,6-bisboron-ester pyrene, were coated onto the nanofibers fabricated by electrospinning. By introducing the nanofibers structure, a 9-fold fluorescence intensity enhancement and a 14-fold sensitivity enhancement were achieved, which could be attributed to its high area-to-volume ratio, excellent gas permeability, and more importantly, the evanescent-wave effect occurred once the diameters of the fibers were small enough. Since the organic semiconductors coated onto the nanofibrous mats could be replaced by other functional materials, the nanofibers-enhanced detection strategies could be extended to more general domains including chemical and environmental detection.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10304012).
文摘The interdigital transducer (IDT) can excite Lamb wave in a piezoelectric plate loading with a liquid layer, and the phase velocity of Lamb wave is associated with the properties of the liquid layer. In this paper, the concept of effective permittivity is introduced to study the Lamb wave's potential application in liquid sensing. Considering the measuring of ideal nonviscous liquid, the sensors array is designed to sense the density and the dielectric constant of the liquid layer simultaneously. Using LiNbO3 as piezoelectric material, in order to improve the sensors array sensitivity and the electro-mechanical coupling coefficient, the optimized results including plate thicknesses and cut orientations are presented by numerical simulation. These studies show that the Lamb wave sensors array can be potential in liquid sensing.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174142,11304160 and 11404147the National Basic Research Program of China under Grant No 2012CB921504+2 种基金the PAPD Projectthe Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant No 13KJB140008the Foundation of Nanjing University of Posts and Telecommunications under Grant No NY213018
文摘ZnO films on R-sapphire substrates are prepared and characterized by x-ray diffraction and scanning electron microscopy, which indicate that the thin films are well crystallized with (1120) texture. Love wave and Rayleigh wave are used for fabrications of humidity sensors, which are excited in [1100] and [0001] directions of the (1120) ZnO piezoelectric films, respectively. The experimental results show that both kinds of sensors have good humidity response and repeatability, and the performances of the Love wave sensors are better than those of the Rayleigh wave sensors at room temperature. Moreover, the theoretical calculations of the mass sensitivity of the sensors are a/so carried out and the calculated results are in good agreement with the experimental measurements.
基金Funded by the National Natural Science Foundation of China (No.50708065)the National High-tech R&D Program(863 Program )(No.2007-AA-11-Z-113)the Key Projects in the Science and Technology Pillar Program of Tianjin(No.11ZCKFSF00300)
文摘In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a specifically designed test setup.The energy attenuation of stress waves was measured by the relative index between the output voltage of sensors and the excitation voltage at the actuator.Based on the experimental results of concrete cube and cylinder specimens,the effect of excitation frequencies,excitation amplitude,wave propagation paths and the curing age on the output signals of sensors are evaluated.The results show that the relative voltage attenuation coefficient RVAC is an effective indicator for measuring the attenuation of stress waves through the interior of concrete.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274037 and 61301046)the Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20120101110031 and 20120101110054)
文摘Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.
基金This study was supported by the National Natural Science Foundation of China (No. 59635140)the Doctoral Education Foundation of the Ministry of Education of ChinaAeronautics Foundation of China.
文摘Investigation of the propagation of the wave in SAW sensors is a basis for the research and design of the sensors. With the advance of the sensor, both the effect of environment on the surface ply and the geometry of waveguide are complicated. To consider the complication, a model with gradient surface ply and multilayer waveguide of SH wave propagation in sensor is proposed. The equation of wave velocity is derived by a transfer matrix method. Through the equation, the function of wave velocity increment via the change of parameters in the surface ply is obtained. The effect of the inhomogeneity on the function is also studied. Finally, some influencing factors of the behavior of the sensor are discussed.
基金Project supported by the National Natural Science Foundation of China and the Foundation ofNational Education Commission of China.
文摘A new type of the surface acoustic wave (SAW) sensor system was delivered. Urease from several kinds of plant seeds was extracted with different extracting solvents. The urease activity, Michaelis constant and other kinetic parameters were estimated for the first time by means of the new device-SAW sensor system. Some factors such as pH, temperature, activators and inhibitors are also discussed. The method can be applied to the determination of urea content in human urine and the experimental results consist with those reported.
基金This paper was supported by the project "Devel-opment of Portable NDT Instrument (2002(39-1))" sponsored by Na-tional Forestry Administrative Bureau of China
文摘Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on defect testing results by using stress wave in terms of image fitting degree and error rate. The results showed that for logs with diameter ranging from 20 to 40 cm, at least 12 sensors were needed to meet the requirement which ensure a high testing accuracy of roughly 90% of fitness with 0.1 of error rate. And 10 sensors were recommended to judge the possible locations of defects and 6 sensors were sufficient to decide whether there were defects or not.
基金This project was supported by a grant from Foundation of National Sensor Key Laboratory of China !(1994).
文摘Summary: A new kind of biosensor for immunology was developed by ultrasonic technique and LB membrane. A double delay-line resonator was made by using ST-cut quartz crystal with working frequency of 149. 7 MHz. Then a layer of LB membrane was covered on it. When anti-IgM anti- body of various concentrations was added to it, the sensor can be used to detect IgM antigen. The biosensor was highly sensitive, small and light. The experimental results showed that the working frequency change of the sensor was proportional to the concentration of antibody with its dilution ratio between 1: 10000 and 1: 100. It was also first observed that the frequency curve of the sen- sor resulting from the reaction of IgM antigen and antibody undulated in the experiment.
文摘This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive inspection technique. Full scale mockups that simulated shell and liner regions of interest in the containment of both a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) were constructed. Inspections were performed on the mock-ups in three stages to discern the signal attenuation caused by flaws and caused by concrete in the structures. The effect of concrete being in close proximity to the liner and shell was determined, and the capability to detect and size flaws via this GW technique was evaluated.
基金supported by the National Natural Science Foundation of China(Nos.20775045,20975063)open foundation of the State Key Laboratory of Chemo/Biosensing and Chemometrics,Hunan University(No.2008012)
文摘We report for the first time a cleavage phenomenon in the resonant peak of a piezoelectric quartz crystal(PQC) in liquid phase.In the presence of a strong longitudinal wave effect,an additional resonant peak appears in the conductance-frequency curve.With gradually increasing liquid density,the additional peak moves from low to high frequency region then disappears.The frequency of the additional resonant peak is sensitive to the change in liquid density.The frequency shift of the additional peak is linear with the liquid density in a given range.For a 5 MHz PQC with a reflection distance of 16 mm for longitudinal wave,the sensitivity to liquid density is 2.61×10^6 Hz g^-1 cm^3.The overlap between the primary resonant peak and the additional resonant peak causes a decrease in the intensity of the former and an increase in the intensity of the latter.In a combined impedance analysis method,the changes in surface mass loading,density and viscosity of the liquid were monitored simultaneously by a PQC sensor.
文摘Marine resource exploitation and marine cargo transportation were increasingly frequent. Due to the impact of the marine environment, ships or platforms were affected. In this paper, a servo electric cylinder was used as a wave compensation actuator to design a wave compensation system. The laser sensor was used to measure the displacement in the direction of the heave platform, and the obtained displacement was applied to the wave compensation in the heave direction to verify the feasibility of the compensation system.
文摘Based on spectrum principle and analyzing the infrared absorption spectrum ofmethane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributedfeedback laser diode) in 1 300 nm waveband is used as illuminant and phase-detecting technology isused to carry out harmonic wave detecting the concentration of methane. The sensitivity can arriveat 10^(-5). Experiments results show that the performance targets of the sensor such as sensitivitycan basically satisfy the requests of methane detection.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203211 and 41675154)the Six Major Talent Peak Expert of Jiangsu Province,China(Grant No.2015-XXRJ-014)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20141483)
文摘Bloch surface waves(BSWs) are excited in one-dimensional photonic crystals(Ph Cs) terminated by a graphene monolayer under the Kretschmann configuration. The field distribution and reflectance spectra are numerically calculated by the transverse magnetic method under transfer-matrix polarization, while the sensitivity is analyzed and compared with those of the surface plasmon resonance sensing method. It is found that the intensity of magnetic field is considerably enhanced in the region of the terminated layer of the multilayer stacks, and that BSW resonance appears only in the interface of the graphene and solution. Influences of the graphene layers and the thickness of a unit cell in Ph Cs on the reflectance are studied as well. In particular, by analyzing the performance of BSW sensors with the graphene monolayer,the wavelength sensitivity of the proposed sensor is 1040 nm/RIU whereas the angular sensitivity is 25.1°/RIU. In addition,the maximum of figure of merit can reach as high as 3000 RIU^-1. Thus, by integrating graphene in a simple Kretschmann structure, one can obtain an enhancement of the light–graphene interaction, which is prospective for creating label-free,low-cost and high-sensitivity optical biosensors.
基金supported by the National Basic Research Program of China(Grant No.2013CB632900)
文摘We have derived a general formula for sensitivity optimization of gravimetric sensors and have used it to design a high sensitivity gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) waveguide layer on (1 -x)Pb(Znl/3Nbz/3)O3-xPbTiO3 (PZN-xPT) single crystal substrate with the carbon fibers parallel to the xj and x2 axes, respectively. The normalized maximum sensitivity (|sfm|λ)max exhibits an increasing tendency with the decrease of (h/λ)opt and the maximum sensitivity (|sfm|λ)max increases with the elastic constant c6E6 of the piezoelectric substrate material. For the CFEC/[011]c poled PZN-7%PT single crystal sensor configuration, with the carbon fibers parallel to the xa axis at λ = 24 ktm, the maximum sensitivity |sfm|max can reach as high as 1156 cmZ/g, which is about three times that of a traditional SiO2/ST quartz structure gravimetric sensor. The better design selection is to have the carbon fibers parallel to the direction of propagation of Love wave in order to obtain the best sensitivity.
文摘A novel wireless and passive surface acoustic wave(SAW)sensor is developed for measuring temperature and pressure.The sensor has two single-port resonators on a substrate.One resonator,acting as the temperature sensor,is located at the fixed end without pressure deformation,and the other one,acting as the pressure sensor,is located at the free end to detect pressure changes due to substrate deformation.Pressure at the free end bends the cantilever,causing a relative change in the acoustic propagation characteristics of the SAW traveling along the surface of the substrate and a relative change in the resonant frequency of the resulting signal.The temperature acts on the entire substrate,affecting the propagation speed of the SAW on the substrate and directly affecting the resonant frequency characteristic parameters.The temperature and pressure performance of this new antenna-connected sensor is tested by using a network analyzer,a constant temperature heating station,and a force gauge.A temperature sensitivity of 1.5015 kHz/℃and a pressure sensitivity of 10.6 kHz/gf at the ambient temperature have been observed by wireless measurements.This work should result in practical engineering applications for high-temperature devices.