Cross-training is a phenomenon related to motor learning, where motor performance of the untrained limb shows improvement in strength and skill execution following unilateral training of the homologous contralateral l...Cross-training is a phenomenon related to motor learning, where motor performance of the untrained limb shows improvement in strength and skill execution following unilateral training of the homologous contralateral limb. We used functional MRI to investigate whether motor performance of the untrained limb could be improved using a serial reaction time task according to motor sequential learning of the trained limb, and whether these skill acquisitions led to changes in brain activation patterns. We recruited 20 right-handed healthy subjects, who were randomly allocated into training and control groups. The training group was trained in performance of a serial reaction time task using their non-dominant left hand, 40 minutes per day, for 10 days, over a period of 2 weeks. The control group did not receive training. Measurements of response time and percentile of response accuracy were performed twice during pre- and post-training, while brain functional MRI was scanned during performance of the serial reaction time task using the untrained right hand. In the training group, prominent changes in response time and percentile of response accuracy were observed in both the untrained right hand and the trained left hand between pre- and post-training. The control group showed no significant changes in the untrained hand between pre- and post-training. In the training group, the activated volume of the cortical areas related to motor function (i.e., primary motor cortex, premotor area, posterior parietal cortex) showed a gradual decrease, and enhanced cerebellar activation of the vermis and the newly activated ipsilateral dentate nucleus were observed during performance of the serial reaction time task using the untrained right hand, accompanied by the cross-motor learning effect. However, no significant changes were observed in the control group. Our findings indicate that motor skills learned over the 2-week training using the trained limb were transferred to the opposite homologous limb, and motor skill acquisition of the untrained limb led to changes in brain activation patterns in the cerebral cortex and cerebellum.展开更多
BACKGROUND: An increasing number of studies have shown the effects of aging in basic cognitive processing and higher cognitive functions using functional magnetic resonance imaging (fMRI). However, little is known ...BACKGROUND: An increasing number of studies have shown the effects of aging in basic cognitive processing and higher cognitive functions using functional magnetic resonance imaging (fMRI). However, little is known about the aging effects in diverse cognitive abilities, such as spatial learning and reasoning. OBJECTIVE: To investigate the effect of aging on spatial cognitive performance and regional brain activation based on fMRI. DESIGN, TIME, AND SETTING: A block design for fMRI observation. This study was performed at the fMRI Laboratory, Brain Science Research Center, Korea Advanced Institute of Science and Technology from March 2006 to May 2009. PARTICIPANTS: Eight right-handed, male, college students in their 20s (mean age 21.5 years) and six right-handed, male, adults in their 40s (mean age 45.7 years), who graduated from college, participated in the study. All subjects were healthy and had no prior history of psychiatric or neurological disorders. METHODS: A spatial task was presented while brain images were acquired using a 3T fMRI system (ISOL Technology, Korea). The spatial tasks involved selecting a shape that corresponded to a given figure using four examples, as well as selecting a development figure of a diagram. MAIN OUTCOME MEASURES: The accuracy rate (number of correct answers/total number of items x 100%) of spatial tasks was calculated. Using the subtraction procedure, the activated areas in the brain during spatial tasks were color-coded by T-score. The double subtraction method was used to analyze the effect of aging between the two age groups (20s versus 40s). RESULTS: The cerebellum, occipital lobe, parietal lobe, and frontal lobe were similarly activated in the two age groups. Increased brain activations, however, were observed in bilateral parietal and superior frontal lobes of the younger group. More activation was observed in bilateral middle frontal and right inferior frontal lobes in the older group. Compared with the older group, the younger men exhibited greater spatial performance (P = 0.012). CONCLUSION: Reduced cognitive function correlated with decreased activation areas in the parietal lobe and altered activation in the frontal lobe.展开更多
Episodic memories are composed of various interrelated elements, including those specific to items of central interest and those pertaining to related features, such as the color, shape, size, spatial location, tempor...Episodic memories are composed of various interrelated elements, including those specific to items of central interest and those pertaining to related features, such as the color, shape, size, spatial location, temporal order, and media or modalities of presentation. Memory about a core item (such as a word, object, or picture) is called item memory while memory about the context or related fea- tures of a core item is defined as source memory. What determines which sources within an episode are successfully remembered is of particular interest to researchers. Behavioral evidence suggests that the orientation of a memory task influences whether the related source of the item will be re- membered later. This study explored changes in the hippocampus and prefrontal cortex while par- ticipants completed two tasks: an item-oriented task and a source-oriented task. We used functional MRI to investigate the neural mechanisms by which task orientation influences source encoding. We found that subsequent source memory effects in the right prefrontal cortex and hippocampus were modulated by task orientation, whereas task orientation modulated item memory effects in the prefrontal cortex. These findings highlight the possibility that the hippocampus contributes to the intentional encoding of item-source associations, whereas the prefrontal cortex is biased toward processing information to which attention is directed.展开更多
It remains unclear whether language tasks in one's first (L1) or second (L2) language can cause stress responses and whether frontal, autonomic and behavioral responses to stressful tasks are correlated. In this ...It remains unclear whether language tasks in one's first (L1) or second (L2) language can cause stress responses and whether frontal, autonomic and behavioral responses to stressful tasks are correlated. In this study, we studied 22 Chinese subjects whose L2 was English and measured the cerebral blood oxygenation in their frontal lobe by using functional near-infrared spectroscopy (fNIRS) as par- ticipants engaged in a mental arithmetic task (MAT) and verbal fluency tasks (VFTs) in L1 (Chinese) and L2 (English). To examine the activated cortical areas, we estimated the channel location based on Montreal Neurological Institute (MNI) standard brain space by using a-probabilistic estimation method. We evaluated heart rate (HR) changes to analyze autonomic nervous system (ANS) functioning. We found that the MAT and VFTs induced greater increases in HR than did the control (Ctrl) task. Further- more, subjects developed greater increases in HR in the MAT and VFTt~ than they did in the VFTL1. Compared with the Ctrl task, the MAT and both VFTLland VFTL2 produced robust and widespread bi- lateral activation of the frontal cortex. Interestingly, partial correlation analysis indicated that the activity in the left inferior frontal gyrus (LIFG) [Brodmarm's area (BA) 47] was consistently correlated with the increases in HR across the three tasks (MAT, VFTL2, and VFTL1), after controlling for the performance data. The present results suggested that a VFT in L2 may be more stressful than in L1. The LIFG may affect the activation of the sympathetic system induced by stressful tasks, includin~ MATs and VFTs.展开更多
BACKGROUND: Previous studies have analyzed cerebral activation and lateralization of cognitive functions, as well as cerebellar function with reference to high-level cognitive processing. However, there has been very...BACKGROUND: Previous studies have analyzed cerebral activation and lateralization of cognitive functions, as well as cerebellar function with reference to high-level cognitive processing. However, there has been very little research on systematization and diversification. In particular, there are no reports on cerebellar lateralization, although reliable results have been reported on cerebral lateralization. OBJECTIVE: This study analyzed cerebellar activation and lateralization in relation to verbal and visuospatial tasks using functional magnetic resonance imaging (fMRI). DESIGN, TIME AND SETTING: A block design for fMRI observation was performed at the fMRI Laboratory, Brain Science Research Center, Korea Advanced Institute of Science and Technology from May 2006 to September 2008. PARTICIPANTS: Sixteen healthy, male, college students, aged (23.3 ± 0.5) years, and 16 healthy, male, college students, aged (21.5 ± 2.3) years, participated in the study, respectively. METHODS: Verbal and visuospatial tasks were presented while functional brain images were acquired using a 3T fMRI system. Verbal analogy testing required the subject to select the word with the same relationship as one of the given words. Verbal antonym testing required the subject to select the word with a different meaning among four words. Visuospatial tasks involved selecting a shape that corresponded to a given figure with four examples, as well as selecting a development figure of a diagram. MAIN OUTCOME MEASURES: Changes in cerebellar activation and lateralization between two cognition tasks. RESULTS: Bilateral hemisphere Iobules VI and IX, right hemisphere Iobule VIII, bilateral hemisphere Iobules Crus I, and vermis Iobule IV, V, and Vl were closely related to verbal tasks in comparison to visuospatial tasks. Conversely, bilateral hemisphere Iobules IV and V, as well as the right hemisphere Iobule VI, were closely related to visuospatial tasks compared to verbal tasks. There was no great difference between the number of activated voxels in the cerebellums during the tasks, and cerebellar lateralization was not observed. CONCLUSION: In the cerebellum, the activation region, but not lateralization, was different between verbal and visuospatial tasks.展开更多
It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we inves-tigated feature binding of col...It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we inves-tigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state.Z-values in the vision-related brain regions were calculated, conifrming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental ifndings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.展开更多
<strong>Objective</strong>: Purpose of this study was to investigate the behavioral and brain activity impairments in patients after moderate traumatic brain injury (mTBI) in comparison with the normal ran...<strong>Objective</strong>: Purpose of this study was to investigate the behavioral and brain activity impairments in patients after moderate traumatic brain injury (mTBI) in comparison with the normal ranges while dual-tasks performing. We would like to evaluate dual-tasking as diagnostic and rehabilitation tool and to test hypothesis of brain aging after mTBI. <strong>Material and Methods</strong>: Electroencephalographic (EEG), stabilographic and clinical study was performed in 11 patients (mean age 28.8 ± 8.4 years) for up to 1 - 12 months after a mTBI in comparison with 17 healthy subjects (26.7 ± 5.1 years). All the participants performed two motor and two cognitive tasks presented separately, and simultaneously (dual-tasking). <strong>Results</strong>: Clinical examination revealed predominantly cognitive deficit in mTBI patients with intact postural control. EEG data demonstrated coherence decrease for slow (delta-theta) rhythms in frontal-temporal areas predominantly for left hemisphere during cognitive tasks performance. In contrast, EEG coherence for slow spectral bands increased in the same areas in healthy volunteers. EEG coherence increased for fast spectral bands—alpha2 and beta, predominantly in right hemisphere while both healthy adults and patients performed motor components of dual tasks. Rehabilitation course with dual tasks, led to a predominant reduction in cognitive deficits, and EEG coherence increases at the frontal-temporal areas of the left hemisphere. <strong>Conclusions</strong>: Dual-tasks may be used as diagnostic tool in patients after mTBI. This approach demonstrates predominant cognitive deficit, and left hemispheric dysfunction in patients similar to elderly persons and support the hypothesis of brain aging after TBI. Pilot studies also suggested rehabilitation effect of dual-tasking in mTBI patients.展开更多
To investigate the neural underpinnings of the effect of nutrition, brain activity of six young healthy volunteers who had a breakfast including various nutrients was compared to when they skipped breakfast or had onl...To investigate the neural underpinnings of the effect of nutrition, brain activity of six young healthy volunteers who had a breakfast including various nutrients was compared to when they skipped breakfast or had only sugar for breakfast by functional magnetic resonance imaging. A repeated measure counterbalanced crossover design was employed. We demonstrated that significantly higher brain activation was observed in the medial aspect of the prefrontal cortex when the subjects had a nutritionally balanced breakfast while the subjects were conducting N-back tasks. This preliminary report was the first to demonstrate by means of brain imaging techniques that taking various nutrients as breakfast as well sugar has relevant impacts on underlying physiological events or cognition.展开更多
The prefrontal cortex (PFC) plays an important role in cognitive function, involved in Executive Functions (EFs) such as planning, working memory, and inhibition. Activation in the PFC also occurs during some motor ac...The prefrontal cortex (PFC) plays an important role in cognitive function, involved in Executive Functions (EFs) such as planning, working memory, and inhibition. Activation in the PFC also occurs during some motor activities. One commonly used tool to assess EF is the Tower of Hanoi, demonstrating sensitivity to PFC dysfunction. However, limited neuroimaging evidence is available to support the contribution of the PFC in the Tower of Hanoi task. In the current study, we use functional near infrared (fNIR) spectroscopy to examine hemodynamic responses associated with neural activity in the PFC in adults as they participate in the Tower of Hanoi task. We compared changes in cerebral oxygenation during resting, a motor task (tapping), and the Tower of Hanoi in 16 neurotypical adults, with measures of relative changes in concentration of oxygenated hemoglobin (Δoxy-Hb) and deoxygenated hemoglobin (Δdeoxy-Hb) taken throughout tasks, as well as total hemoglobin (ΔHbT) and oxygenation (Δoxy). Performance on the Tower of Hanoi was measured by the number of moves used to complete each level and the highest level of successful performance (3, 4, or 5 disks). We found a significant higher value of Δoxy-Hb and Δoxy in dorsolateral PFC (DLPFC) during the Tower of Hanoi as compared to tapping and resting. Significant changes in Δdeoxy-Hb and ΔHbT during the Tower of Hanoi were found in the right DLPFC only. These results support the notion that the Tower of Hanoi task requires higher levels of PFC activity than a similar motor task with low executive function demands.展开更多
The influence of fluctuations of atmospheric pressure on the functional state of the humans was studied during spring, autumn and winter seasons. Sensory-motor reaction time and selfreported wellbeing, activity and mo...The influence of fluctuations of atmospheric pressure on the functional state of the humans was studied during spring, autumn and winter seasons. Sensory-motor reaction time and selfreported wellbeing, activity and mood were used for evaluation of functional state. The inter-individual variations of those parameters were compared to meteorological parameters using rank order correlation and general linear model. It was found that atmospheric pressure fluctuations have a stronger negative effect with periods of 120-1200 s and 20-120 s on psychological self-assessment and with periods of 10-20 s and 5-10 s on sensory-motor reaction time than the fluctuations with other periods.展开更多
One of the interesting topics in grid computing systems is resources discovery. After the failure of a resource in a chain of resources made for a specific task in grid environment, discovering and finding a new resou...One of the interesting topics in grid computing systems is resources discovery. After the failure of a resource in a chain of resources made for a specific task in grid environment, discovering and finding a new resource that reconstructs the chain is an important topic. In this study, with defining new agent that is called task agent, and by proposing an algorithm, we will increase the fault tolerance against probable failure of a resource in the resource chain.展开更多
目的探讨首发男性精神分裂症患者康复期工作记忆功能的特点。方法选取2020年11月至2024年12月入住某院精神科的男性首发精神分裂症康复期患者59例(患者组)和男性健康志愿者60名(对照组),采用蒙特利尔认知评估(MoCA)量表对两组被试认知...目的探讨首发男性精神分裂症患者康复期工作记忆功能的特点。方法选取2020年11月至2024年12月入住某院精神科的男性首发精神分裂症康复期患者59例(患者组)和男性健康志愿者60名(对照组),采用蒙特利尔认知评估(MoCA)量表对两组被试认知功能进行评估,通过数字n-back任务(0-back、1-back、2-back)评估工作记忆,比较两组行为学表现。结果两组在年龄、受教育年限、MoCA评分等一般情况差异无统计学意义(P>0.05);患者组在0-back、1-back和2-back任务中的正确率(97.33%、94.00%、82.67%)均显著低于对照组(98.33%、96.16%、89.67%,P<0.05),0-back和1-back任务反应时(440.65 ms、467.00 ms)显著长于对照组(393.85 ms、440.09 ms,P<0.05),2-back反应时两组差异无统计学意义(541.75 ms VS 534.55 ms,P>0.05)。结论首发男性精神分裂症患者康复期存在工作记忆功能损伤,表现为正确率下降和反应延迟,提示其可能是该疾病的原发性认知缺陷。展开更多
Background: Mobility limitations and cognitive impairments which are common with ageing often coexist, causing a reduction in the levels of physical and mental activity and are prognostic of future adverse health even...Background: Mobility limitations and cognitive impairments which are common with ageing often coexist, causing a reduction in the levels of physical and mental activity and are prognostic of future adverse health events and falls. Consequently, multi-task training paradigms that simultaneously address both mobility and cognition benefit healthy ageing are important to consider in rehabilitation as well as primary prevention. Objectives: An exploratory RCT is being conducted to: a) describe the feasibility and acceptability of the study design and process, procedures, resources and management in two game-based dual-task training programs delivered in the community;b) to explore the lived experiences of the study participants who completed their respective exercise programs. A secondary objective is to obtain preliminary data on the therapeutic effectiveness of the two dual-task training programs. Methods: Thirty healthy older community dwelling participants aged 70 - 85 with previous history of falls will be recruited and randomized to either dual- task treadmill walking (experimental group) or dual-task recumbent bicycle (control group). Data analysis: The qualitative data will be analyzed by two investigators using a content analysis approach. For the quantitative data, outcome measures will be collected pre and post intervention and included measures to assess core balance, spatial-temporal gait variables, visual tracking and cognitive function, as well as, balance and gait analysis under dual-task conditions. Discussion: This research will demonstrate the feasibility of the dual-task training programs in the community, and demonstrate the system’s ability to improve targeted and integrated (dual-task) aspects of balance, mobility, gaze, and cognitive performance. A blended analysis of balance, mobility gaze and cognition will also contribute to a better understanding of the functional consequences of decline in physical and mental skills with age. Trial registration: This pilot clinical trial has been registered at ClinicalTrials.gov Protocol Registration System: NCT01940055.展开更多
基金supported by the Yeungnam College of Science & Technology Research Grants in 2012
文摘Cross-training is a phenomenon related to motor learning, where motor performance of the untrained limb shows improvement in strength and skill execution following unilateral training of the homologous contralateral limb. We used functional MRI to investigate whether motor performance of the untrained limb could be improved using a serial reaction time task according to motor sequential learning of the trained limb, and whether these skill acquisitions led to changes in brain activation patterns. We recruited 20 right-handed healthy subjects, who were randomly allocated into training and control groups. The training group was trained in performance of a serial reaction time task using their non-dominant left hand, 40 minutes per day, for 10 days, over a period of 2 weeks. The control group did not receive training. Measurements of response time and percentile of response accuracy were performed twice during pre- and post-training, while brain functional MRI was scanned during performance of the serial reaction time task using the untrained right hand. In the training group, prominent changes in response time and percentile of response accuracy were observed in both the untrained right hand and the trained left hand between pre- and post-training. The control group showed no significant changes in the untrained hand between pre- and post-training. In the training group, the activated volume of the cortical areas related to motor function (i.e., primary motor cortex, premotor area, posterior parietal cortex) showed a gradual decrease, and enhanced cerebellar activation of the vermis and the newly activated ipsilateral dentate nucleus were observed during performance of the serial reaction time task using the untrained right hand, accompanied by the cross-motor learning effect. However, no significant changes were observed in the control group. Our findings indicate that motor skills learned over the 2-week training using the trained limb were transferred to the opposite homologous limb, and motor skill acquisition of the untrained limb led to changes in brain activation patterns in the cerebral cortex and cerebellum.
文摘BACKGROUND: An increasing number of studies have shown the effects of aging in basic cognitive processing and higher cognitive functions using functional magnetic resonance imaging (fMRI). However, little is known about the aging effects in diverse cognitive abilities, such as spatial learning and reasoning. OBJECTIVE: To investigate the effect of aging on spatial cognitive performance and regional brain activation based on fMRI. DESIGN, TIME, AND SETTING: A block design for fMRI observation. This study was performed at the fMRI Laboratory, Brain Science Research Center, Korea Advanced Institute of Science and Technology from March 2006 to May 2009. PARTICIPANTS: Eight right-handed, male, college students in their 20s (mean age 21.5 years) and six right-handed, male, adults in their 40s (mean age 45.7 years), who graduated from college, participated in the study. All subjects were healthy and had no prior history of psychiatric or neurological disorders. METHODS: A spatial task was presented while brain images were acquired using a 3T fMRI system (ISOL Technology, Korea). The spatial tasks involved selecting a shape that corresponded to a given figure using four examples, as well as selecting a development figure of a diagram. MAIN OUTCOME MEASURES: The accuracy rate (number of correct answers/total number of items x 100%) of spatial tasks was calculated. Using the subtraction procedure, the activated areas in the brain during spatial tasks were color-coded by T-score. The double subtraction method was used to analyze the effect of aging between the two age groups (20s versus 40s). RESULTS: The cerebellum, occipital lobe, parietal lobe, and frontal lobe were similarly activated in the two age groups. Increased brain activations, however, were observed in bilateral parietal and superior frontal lobes of the younger group. More activation was observed in bilateral middle frontal and right inferior frontal lobes in the older group. Compared with the older group, the younger men exhibited greater spatial performance (P = 0.012). CONCLUSION: Reduced cognitive function correlated with decreased activation areas in the parietal lobe and altered activation in the frontal lobe.
基金funded by the General Program of the National Natural Science Foundationof China,No.31271090,31100728,90924013the Philosophy and Social Sciences Education Special-Program during the 12th Five-Year Plan Period of Shanghai City,No.2012JJY001the Whole Advancement Sociology Research Program of "985 Engineering" Phase III ofFudan University in China,No.2011SHKXZD008
文摘Episodic memories are composed of various interrelated elements, including those specific to items of central interest and those pertaining to related features, such as the color, shape, size, spatial location, temporal order, and media or modalities of presentation. Memory about a core item (such as a word, object, or picture) is called item memory while memory about the context or related fea- tures of a core item is defined as source memory. What determines which sources within an episode are successfully remembered is of particular interest to researchers. Behavioral evidence suggests that the orientation of a memory task influences whether the related source of the item will be re- membered later. This study explored changes in the hippocampus and prefrontal cortex while par- ticipants completed two tasks: an item-oriented task and a source-oriented task. We used functional MRI to investigate the neural mechanisms by which task orientation influences source encoding. We found that subsequent source memory effects in the right prefrontal cortex and hippocampus were modulated by task orientation, whereas task orientation modulated item memory effects in the prefrontal cortex. These findings highlight the possibility that the hippocampus contributes to the intentional encoding of item-source associations, whereas the prefrontal cortex is biased toward processing information to which attention is directed.
基金supported by the National High Technology Research and Development Program of China("863"Program,No.2012AA020905)the National Natural Science Foundation of China(No.81171143)+1 种基金the Project of International Cooperation and Exchanges of the National Natural Science Foundation of China(No.81161160570)the Zhou Dafu Medical Research Fund(No.202836019-03)
文摘It remains unclear whether language tasks in one's first (L1) or second (L2) language can cause stress responses and whether frontal, autonomic and behavioral responses to stressful tasks are correlated. In this study, we studied 22 Chinese subjects whose L2 was English and measured the cerebral blood oxygenation in their frontal lobe by using functional near-infrared spectroscopy (fNIRS) as par- ticipants engaged in a mental arithmetic task (MAT) and verbal fluency tasks (VFTs) in L1 (Chinese) and L2 (English). To examine the activated cortical areas, we estimated the channel location based on Montreal Neurological Institute (MNI) standard brain space by using a-probabilistic estimation method. We evaluated heart rate (HR) changes to analyze autonomic nervous system (ANS) functioning. We found that the MAT and VFTs induced greater increases in HR than did the control (Ctrl) task. Further- more, subjects developed greater increases in HR in the MAT and VFTt~ than they did in the VFTL1. Compared with the Ctrl task, the MAT and both VFTLland VFTL2 produced robust and widespread bi- lateral activation of the frontal cortex. Interestingly, partial correlation analysis indicated that the activity in the left inferior frontal gyrus (LIFG) [Brodmarm's area (BA) 47] was consistently correlated with the increases in HR across the three tasks (MAT, VFTL2, and VFTL1), after controlling for the performance data. The present results suggested that a VFT in L2 may be more stressful than in L1. The LIFG may affect the activation of the sympathetic system induced by stressful tasks, includin~ MATs and VFTs.
文摘BACKGROUND: Previous studies have analyzed cerebral activation and lateralization of cognitive functions, as well as cerebellar function with reference to high-level cognitive processing. However, there has been very little research on systematization and diversification. In particular, there are no reports on cerebellar lateralization, although reliable results have been reported on cerebral lateralization. OBJECTIVE: This study analyzed cerebellar activation and lateralization in relation to verbal and visuospatial tasks using functional magnetic resonance imaging (fMRI). DESIGN, TIME AND SETTING: A block design for fMRI observation was performed at the fMRI Laboratory, Brain Science Research Center, Korea Advanced Institute of Science and Technology from May 2006 to September 2008. PARTICIPANTS: Sixteen healthy, male, college students, aged (23.3 ± 0.5) years, and 16 healthy, male, college students, aged (21.5 ± 2.3) years, participated in the study, respectively. METHODS: Verbal and visuospatial tasks were presented while functional brain images were acquired using a 3T fMRI system. Verbal analogy testing required the subject to select the word with the same relationship as one of the given words. Verbal antonym testing required the subject to select the word with a different meaning among four words. Visuospatial tasks involved selecting a shape that corresponded to a given figure with four examples, as well as selecting a development figure of a diagram. MAIN OUTCOME MEASURES: Changes in cerebellar activation and lateralization between two cognition tasks. RESULTS: Bilateral hemisphere Iobules VI and IX, right hemisphere Iobule VIII, bilateral hemisphere Iobules Crus I, and vermis Iobule IV, V, and Vl were closely related to verbal tasks in comparison to visuospatial tasks. Conversely, bilateral hemisphere Iobules IV and V, as well as the right hemisphere Iobule VI, were closely related to visuospatial tasks compared to verbal tasks. There was no great difference between the number of activated voxels in the cerebellums during the tasks, and cerebellar lateralization was not observed. CONCLUSION: In the cerebellum, the activation region, but not lateralization, was different between verbal and visuospatial tasks.
基金financially supported by grants from the National Natural Science Foundation of China,No.61170136,61373101,61472270,and 61402318Natural Science Foundation(Youth Science and Technology Research Foundation)of Shanxi Province,No.2014021022-5Shanxi Provincial Key Science and Technology Projects(Agriculture),No.20130311037-4
文摘It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we inves-tigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state.Z-values in the vision-related brain regions were calculated, conifrming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental ifndings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.
文摘<strong>Objective</strong>: Purpose of this study was to investigate the behavioral and brain activity impairments in patients after moderate traumatic brain injury (mTBI) in comparison with the normal ranges while dual-tasks performing. We would like to evaluate dual-tasking as diagnostic and rehabilitation tool and to test hypothesis of brain aging after mTBI. <strong>Material and Methods</strong>: Electroencephalographic (EEG), stabilographic and clinical study was performed in 11 patients (mean age 28.8 ± 8.4 years) for up to 1 - 12 months after a mTBI in comparison with 17 healthy subjects (26.7 ± 5.1 years). All the participants performed two motor and two cognitive tasks presented separately, and simultaneously (dual-tasking). <strong>Results</strong>: Clinical examination revealed predominantly cognitive deficit in mTBI patients with intact postural control. EEG data demonstrated coherence decrease for slow (delta-theta) rhythms in frontal-temporal areas predominantly for left hemisphere during cognitive tasks performance. In contrast, EEG coherence for slow spectral bands increased in the same areas in healthy volunteers. EEG coherence increased for fast spectral bands—alpha2 and beta, predominantly in right hemisphere while both healthy adults and patients performed motor components of dual tasks. Rehabilitation course with dual tasks, led to a predominant reduction in cognitive deficits, and EEG coherence increases at the frontal-temporal areas of the left hemisphere. <strong>Conclusions</strong>: Dual-tasks may be used as diagnostic tool in patients after mTBI. This approach demonstrates predominant cognitive deficit, and left hemispheric dysfunction in patients similar to elderly persons and support the hypothesis of brain aging after TBI. Pilot studies also suggested rehabilitation effect of dual-tasking in mTBI patients.
文摘To investigate the neural underpinnings of the effect of nutrition, brain activity of six young healthy volunteers who had a breakfast including various nutrients was compared to when they skipped breakfast or had only sugar for breakfast by functional magnetic resonance imaging. A repeated measure counterbalanced crossover design was employed. We demonstrated that significantly higher brain activation was observed in the medial aspect of the prefrontal cortex when the subjects had a nutritionally balanced breakfast while the subjects were conducting N-back tasks. This preliminary report was the first to demonstrate by means of brain imaging techniques that taking various nutrients as breakfast as well sugar has relevant impacts on underlying physiological events or cognition.
文摘The prefrontal cortex (PFC) plays an important role in cognitive function, involved in Executive Functions (EFs) such as planning, working memory, and inhibition. Activation in the PFC also occurs during some motor activities. One commonly used tool to assess EF is the Tower of Hanoi, demonstrating sensitivity to PFC dysfunction. However, limited neuroimaging evidence is available to support the contribution of the PFC in the Tower of Hanoi task. In the current study, we use functional near infrared (fNIR) spectroscopy to examine hemodynamic responses associated with neural activity in the PFC in adults as they participate in the Tower of Hanoi task. We compared changes in cerebral oxygenation during resting, a motor task (tapping), and the Tower of Hanoi in 16 neurotypical adults, with measures of relative changes in concentration of oxygenated hemoglobin (Δoxy-Hb) and deoxygenated hemoglobin (Δdeoxy-Hb) taken throughout tasks, as well as total hemoglobin (ΔHbT) and oxygenation (Δoxy). Performance on the Tower of Hanoi was measured by the number of moves used to complete each level and the highest level of successful performance (3, 4, or 5 disks). We found a significant higher value of Δoxy-Hb and Δoxy in dorsolateral PFC (DLPFC) during the Tower of Hanoi as compared to tapping and resting. Significant changes in Δdeoxy-Hb and ΔHbT during the Tower of Hanoi were found in the right DLPFC only. These results support the notion that the Tower of Hanoi task requires higher levels of PFC activity than a similar motor task with low executive function demands.
文摘The influence of fluctuations of atmospheric pressure on the functional state of the humans was studied during spring, autumn and winter seasons. Sensory-motor reaction time and selfreported wellbeing, activity and mood were used for evaluation of functional state. The inter-individual variations of those parameters were compared to meteorological parameters using rank order correlation and general linear model. It was found that atmospheric pressure fluctuations have a stronger negative effect with periods of 120-1200 s and 20-120 s on psychological self-assessment and with periods of 10-20 s and 5-10 s on sensory-motor reaction time than the fluctuations with other periods.
文摘One of the interesting topics in grid computing systems is resources discovery. After the failure of a resource in a chain of resources made for a specific task in grid environment, discovering and finding a new resource that reconstructs the chain is an important topic. In this study, with defining new agent that is called task agent, and by proposing an algorithm, we will increase the fault tolerance against probable failure of a resource in the resource chain.
文摘目的探讨首发男性精神分裂症患者康复期工作记忆功能的特点。方法选取2020年11月至2024年12月入住某院精神科的男性首发精神分裂症康复期患者59例(患者组)和男性健康志愿者60名(对照组),采用蒙特利尔认知评估(MoCA)量表对两组被试认知功能进行评估,通过数字n-back任务(0-back、1-back、2-back)评估工作记忆,比较两组行为学表现。结果两组在年龄、受教育年限、MoCA评分等一般情况差异无统计学意义(P>0.05);患者组在0-back、1-back和2-back任务中的正确率(97.33%、94.00%、82.67%)均显著低于对照组(98.33%、96.16%、89.67%,P<0.05),0-back和1-back任务反应时(440.65 ms、467.00 ms)显著长于对照组(393.85 ms、440.09 ms,P<0.05),2-back反应时两组差异无统计学意义(541.75 ms VS 534.55 ms,P>0.05)。结论首发男性精神分裂症患者康复期存在工作记忆功能损伤,表现为正确率下降和反应延迟,提示其可能是该疾病的原发性认知缺陷。
文摘Background: Mobility limitations and cognitive impairments which are common with ageing often coexist, causing a reduction in the levels of physical and mental activity and are prognostic of future adverse health events and falls. Consequently, multi-task training paradigms that simultaneously address both mobility and cognition benefit healthy ageing are important to consider in rehabilitation as well as primary prevention. Objectives: An exploratory RCT is being conducted to: a) describe the feasibility and acceptability of the study design and process, procedures, resources and management in two game-based dual-task training programs delivered in the community;b) to explore the lived experiences of the study participants who completed their respective exercise programs. A secondary objective is to obtain preliminary data on the therapeutic effectiveness of the two dual-task training programs. Methods: Thirty healthy older community dwelling participants aged 70 - 85 with previous history of falls will be recruited and randomized to either dual- task treadmill walking (experimental group) or dual-task recumbent bicycle (control group). Data analysis: The qualitative data will be analyzed by two investigators using a content analysis approach. For the quantitative data, outcome measures will be collected pre and post intervention and included measures to assess core balance, spatial-temporal gait variables, visual tracking and cognitive function, as well as, balance and gait analysis under dual-task conditions. Discussion: This research will demonstrate the feasibility of the dual-task training programs in the community, and demonstrate the system’s ability to improve targeted and integrated (dual-task) aspects of balance, mobility, gaze, and cognitive performance. A blended analysis of balance, mobility gaze and cognition will also contribute to a better understanding of the functional consequences of decline in physical and mental skills with age. Trial registration: This pilot clinical trial has been registered at ClinicalTrials.gov Protocol Registration System: NCT01940055.