In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were invest...In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.展开更多
Herein,the surface of Moso bamboo was hydrophobically modified by combining O_(2)/N_(2)plasma treatments with polydimethylsiloxane(PDMS)solution treatment as the hydrophobic solution.The effects of plasma treatment pr...Herein,the surface of Moso bamboo was hydrophobically modified by combining O_(2)/N_(2)plasma treatments with polydimethylsiloxane(PDMS)solution treatment as the hydrophobic solution.The effects of plasma treatment process(power and time),PDMS solution concentration,and maceration time on the hydrophobic performance of bamboo specimens were studied,and the optimal treatment conditions for improving the hydrophobicity were determined.Scanning electron microscopy(SEM),fourier transform infrared(FTIR),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS)were used to analyze the surface morphology,chemical structure,and functional groups in the specimens before and after the plasma and PDMS solution treatments under optimal conditions.Response surface analysis was also performed to determine the optimal treatment conditions.Results show that the hydrophobic performance of the Moso bamboo surface is effectively improved and the surface energy is reduced after the coordinated treatment.The optimal conditions for improving the hydrophobic performance of Moso bamboo surface are a treatment power of 800 W,treatment time of 15 s,O_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for O_(2)plasma treatment and a treatment power of 1000 W,treatment time of 15 s,N_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for N_(2)plasma treatment.After treatment,silicone oil particles and plasma etching traces are observed on the bamboo surface.Moreover,Si-O bonds in the PDMS solution are grafted to the bamboo surface via covalent bonds,thereby increasing the contact angle and decreasing the surface energy to achieve the hydrophobic effect.展开更多
In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance ...In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology.展开更多
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o...The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.展开更多
The kitchen-oil wastewater is characterized by a high concentration of organicmatter,complex composition and refractory pollutants,which make wastewater treatment more difficult.Based on the study of using micro-elect...The kitchen-oil wastewater is characterized by a high concentration of organicmatter,complex composition and refractory pollutants,which make wastewater treatment more difficult.Based on the study of using micro-electric field characteristic catalyst HCLL-S8-M to enhance the electron transfer between microorganisms in kitchen-oil wastewater which further improved the COD removal rate,we focus on themicrobial community,intracellular metabolism and extracellular respiration,and make an in-depth analysis of the molecular biological mechanisms to microbial treatment in wastewater.It is found that electroactive microorganisms are enriched on the material surface,and the expression levels of cytochrome c and riboflavin genes related to electron transfer are up-regulated,confirming that the surface micro-electric field structure could enhance the electron transfer between microbial species and improve the efficiency ofwastewater degradation.This study provides a new idea for the treatment of refractory organic wastewater.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
Phthalic acid esters(PAEs)are a group of compounds widespread in the environment.To investigate the occurrence and accumulation characteristics of PAEs,surface water samples were collected from the Three Gorges Reserv...Phthalic acid esters(PAEs)are a group of compounds widespread in the environment.To investigate the occurrence and accumulation characteristics of PAEs,surface water samples were collected from the Three Gorges Reservoir area,China.The total concentrations of∑_(11)analyzed PAEs(11PAEs)in the collected water samples ranging from 197.7 to 1,409.3 ng/L(mean±IQR:583.1±308.4 ng/L).While DEHP was the most frequently detected PAE,DnBP and DnNP were the most predominant PAEs in the analyzed water samples with a mean contribution of 63.3%of the∑_(11)PAEs.The concentrations of the∑_(11)PAEs in the water samples from the upper reaches of the Yangtze River were significantly higher than those from themiddle reaches.To better understand the transport and fate of the PAEs,seven detected PAEs were modeled by Quantitative Water Air Sediment Interaction(QWASI).The simulated and measured values were close for most PAEs,and differences are within one order of magnitude even for the worst one.For all simulated PAEs,water and particle inflow were main sources in the reservoir,whereas water outflow and degradation in water were important removal pathways.The contribution ratios of different sources/losses varied fromPAEs,depending on their properties.The calculated risk quotients of DnNP in the Three Gorges Reservoir area whether based onmonitoring or simulating results were all far exceeded the safety threshold value,implying the occurrence of this PAE compound may cause potential adverse effects for the aquatic ecology of the Three Gorges Reservoir area.展开更多
Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimila...Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.展开更多
Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomer...Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numeri...Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.展开更多
The contact problem of deformed rough surfaces exists widely in complex engineering structures.How to reveal the influence mechanism of surface deformation on the contact properties is a key issue in evaluating the in...The contact problem of deformed rough surfaces exists widely in complex engineering structures.How to reveal the influence mechanism of surface deformation on the contact properties is a key issue in evaluating the interface performances of the engineering structures.In this paper,a contact model is established,which is suitable for tensile and bending deformed contact surfaces.Four contact forms of asperities are proposed,and their distribution characteristics are analyzed.This model reveals the mechanism of friction generation from the perspective of the force balance of asperity.The results show the contact behaviors of the deformed contact surface are significantly different from that of the plane contact,which is mainly reflected in the change in the number of contact asperities and the real contact area.This study suggests that the real contact area of the interface can be altered by applying tensile and bending strains,thereby regulating its contact mechanics and conductive behavior.展开更多
The Mg-9Li-1Zn(LZ91)alloy was subjected to an ultrasonic surface rolling process(USRP)with varying passes for the purpose of modifying its surface state.The USRP transformed surface residual stress from initial tensil...The Mg-9Li-1Zn(LZ91)alloy was subjected to an ultrasonic surface rolling process(USRP)with varying passes for the purpose of modifying its surface state.The USRP transformed surface residual stress from initial tensile stress to compressive stress,decreasing the surface roughness and increasing the ratio of the β-Li phase.The USRPed LZ91 sample(3 passes)showed superior corrosion resistance,with the corrosion current density changing from 57.11 to 24.70μA cm^(-2),and the polarization resistance increasing from 576.3 to 1146.1Ωcm^(2).According to the corrosion procedure evaluations,in situ observation revealed that the LZ91 alloy initially experiences pitting,which subsequently develops into cracking.The substantial area coverage of the β-Li phase facilitates the formation of a protective film on the surface,effectively delaying localized corrosion.展开更多
Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was appli...Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was applied on a rare-earth addition bearing steel.And rolling contact fatigue behavior of treated samples was compared with that of as-received counterparts at different contacting stresses.The results demonstrated that a 700μm-thick gradient nanostructured surface layer is produced on samples by surface mechanical rolling treatment.The grain size decreases while the microhardness increases gradually with decreasing depth,reaching~23 nm and~10.2 GPa,respectively,at the top surface.Consequently,the rolling contact fatigue property is significantly enhanced.The characteristic life of treated samples is~3.2 times that of untreated counterparts according to Weibull curves at 5.6 GPa.Analyses of fatigue mechanisms demonstrated that the gradient nanostructured surface layer might not only retard material degradation and microcrack formation,but also prolong the steady-state elastic response stage under rolling contact fatigue.展开更多
The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructur...The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).展开更多
Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics...Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized.展开更多
The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel...The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.展开更多
Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to...Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to CDs are atomically imprecise and their molecular weight distribution is broad.In this paper,a series of Pluronic-modified CDs were prepared and the structure of the CDs was briefly analyzed.Subsequently,a molecular weight measurement method based on colligative properties was developed,and the correction coefficient in the algorithm was briefly analyzed.The calculated molecular weight was applied to the determination of surface adsorption capacity.This work provided a method for averaging the molecular weight of atomically imprecise particulate materials,which is expected to provide new opportunities in related fields.展开更多
According to surface morphology,microhardness,X-ray diffraction,and static contact angle experiments,the changes in the surface integrity and corrosion resistance of 6061-T6 aluminum alloy after ultrasonic shot peenin...According to surface morphology,microhardness,X-ray diffraction,and static contact angle experiments,the changes in the surface integrity and corrosion resistance of 6061-T6 aluminum alloy after ultrasonic shot peening(USP)were investigated.Results show that the grain size of the material surface is reduced by 43%,the residual compressive stress has an increasing trend,the roughness and hardness are increased by approximately 211.1%and 35%,respectively.And the static contact angle is increased at first,followed by a slight decrease.Weighing,scanning electron microscope,and energy dispersive spectrometer were used to study the samples after a cyclic corrosion test.Results show that USP reduces the corrosion rate by 41.2%.A model of surface corrosion mechanism of USP is developed,and the mechanism of USP to improve the corrosion resistance of materials is discussed.The introduction of compressive residual stresses,grain refinement,increased grain boundaries,increased hardness,and increased static contact angle are the main factors related to the improvement of corrosion resistance in most materials,while increased roughness tends to weaken surface corrosion resistance.展开更多
文摘In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.
基金Zhejiang Provincial Cooperative Forestry Science and Technology Project(No.2023SY05)Zhejiang Provincial Science and Technology Project(No.2024F1065-2).
文摘Herein,the surface of Moso bamboo was hydrophobically modified by combining O_(2)/N_(2)plasma treatments with polydimethylsiloxane(PDMS)solution treatment as the hydrophobic solution.The effects of plasma treatment process(power and time),PDMS solution concentration,and maceration time on the hydrophobic performance of bamboo specimens were studied,and the optimal treatment conditions for improving the hydrophobicity were determined.Scanning electron microscopy(SEM),fourier transform infrared(FTIR),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS)were used to analyze the surface morphology,chemical structure,and functional groups in the specimens before and after the plasma and PDMS solution treatments under optimal conditions.Response surface analysis was also performed to determine the optimal treatment conditions.Results show that the hydrophobic performance of the Moso bamboo surface is effectively improved and the surface energy is reduced after the coordinated treatment.The optimal conditions for improving the hydrophobic performance of Moso bamboo surface are a treatment power of 800 W,treatment time of 15 s,O_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for O_(2)plasma treatment and a treatment power of 1000 W,treatment time of 15 s,N_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for N_(2)plasma treatment.After treatment,silicone oil particles and plasma etching traces are observed on the bamboo surface.Moreover,Si-O bonds in the PDMS solution are grafted to the bamboo surface via covalent bonds,thereby increasing the contact angle and decreasing the surface energy to achieve the hydrophobic effect.
基金supported by the National Natural Science Foundation of China(Grant No.12272369)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0620101).
文摘In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology.
基金funding support from the National Natural Science Foundation of China(Grant No.52274082)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(Grant No.JXUSTQJBJ2020003)the Innovation Fund Designated for Graduate Students of Jiangxi Province(Grant No.YC2023-B215).
文摘The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.
基金supported by the National Natural Science Foundation of China(Nos.52150056 and 51838005)the Basic and Applied Basic Research Foundation of Guangdong Province(No.2023A1515111061).
文摘The kitchen-oil wastewater is characterized by a high concentration of organicmatter,complex composition and refractory pollutants,which make wastewater treatment more difficult.Based on the study of using micro-electric field characteristic catalyst HCLL-S8-M to enhance the electron transfer between microorganisms in kitchen-oil wastewater which further improved the COD removal rate,we focus on themicrobial community,intracellular metabolism and extracellular respiration,and make an in-depth analysis of the molecular biological mechanisms to microbial treatment in wastewater.It is found that electroactive microorganisms are enriched on the material surface,and the expression levels of cytochrome c and riboflavin genes related to electron transfer are up-regulated,confirming that the surface micro-electric field structure could enhance the electron transfer between microbial species and improve the efficiency ofwastewater degradation.This study provides a new idea for the treatment of refractory organic wastewater.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
基金supported by the Innovation Fund of Nanjing Institute of Environmental Science,Ministry of Ecology and Environment,China(No.ZX2023QT003)the National Natural Science Foundation of China(No.22306130)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2022ZB789)the Ecological Environment Research Project of Jiangsu Province,China(No.2022014).
文摘Phthalic acid esters(PAEs)are a group of compounds widespread in the environment.To investigate the occurrence and accumulation characteristics of PAEs,surface water samples were collected from the Three Gorges Reservoir area,China.The total concentrations of∑_(11)analyzed PAEs(11PAEs)in the collected water samples ranging from 197.7 to 1,409.3 ng/L(mean±IQR:583.1±308.4 ng/L).While DEHP was the most frequently detected PAE,DnBP and DnNP were the most predominant PAEs in the analyzed water samples with a mean contribution of 63.3%of the∑_(11)PAEs.The concentrations of the∑_(11)PAEs in the water samples from the upper reaches of the Yangtze River were significantly higher than those from themiddle reaches.To better understand the transport and fate of the PAEs,seven detected PAEs were modeled by Quantitative Water Air Sediment Interaction(QWASI).The simulated and measured values were close for most PAEs,and differences are within one order of magnitude even for the worst one.For all simulated PAEs,water and particle inflow were main sources in the reservoir,whereas water outflow and degradation in water were important removal pathways.The contribution ratios of different sources/losses varied fromPAEs,depending on their properties.The calculated risk quotients of DnNP in the Three Gorges Reservoir area whether based onmonitoring or simulating results were all far exceeded the safety threshold value,implying the occurrence of this PAE compound may cause potential adverse effects for the aquatic ecology of the Three Gorges Reservoir area.
基金sponsored by the National Natural Science Foundation of China[grant number U2442218]。
文摘Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.
基金financially supported by the National Natural Science Foundation of China(62464010)Spring City Plan-Special Program for Young Talents(K202005007)+3 种基金Yunnan Talents Support Plan for Yong Talents(XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)Key Laboratory of Artificial Microstructures in Yunnan Higher EducationFrontier Research Team of Kunming University 2023。
文摘Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金National Natural Science Foundation of China under Grant Nos.52078386 and 52308496SINOMACH Youth Science and Technology Fund under Grant No.QNJJ-PY-2022-02+2 种基金Young Elite Scientists Sponsorship Program under Grant No.BYESS2023432Fund of State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,Jianghan University under Grant No.PBSKL2023A9Fund of China Railway Construction Group Co.,Ltd.under Grant No.LX19-04b。
文摘Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.
基金This work are supported by the Natural Science Foundation of China General Program(Grant No.12272157)the Natural Science Foundation of China Major Program(Grant No.12327901)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2023-ey05)the 111 Project(Grant No.B14044).
文摘The contact problem of deformed rough surfaces exists widely in complex engineering structures.How to reveal the influence mechanism of surface deformation on the contact properties is a key issue in evaluating the interface performances of the engineering structures.In this paper,a contact model is established,which is suitable for tensile and bending deformed contact surfaces.Four contact forms of asperities are proposed,and their distribution characteristics are analyzed.This model reveals the mechanism of friction generation from the perspective of the force balance of asperity.The results show the contact behaviors of the deformed contact surface are significantly different from that of the plane contact,which is mainly reflected in the change in the number of contact asperities and the real contact area.This study suggests that the real contact area of the interface can be altered by applying tensile and bending strains,thereby regulating its contact mechanics and conductive behavior.
基金financially supported by the National Natural Science Foundation of China(No.52271091)the National Key Research and Development Program of China(No.2021YFB3701100)the Natural Science Foundation Project of Ningxia Province(No.2023AAC03324).
文摘The Mg-9Li-1Zn(LZ91)alloy was subjected to an ultrasonic surface rolling process(USRP)with varying passes for the purpose of modifying its surface state.The USRP transformed surface residual stress from initial tensile stress to compressive stress,decreasing the surface roughness and increasing the ratio of the β-Li phase.The USRPed LZ91 sample(3 passes)showed superior corrosion resistance,with the corrosion current density changing from 57.11 to 24.70μA cm^(-2),and the polarization resistance increasing from 576.3 to 1146.1Ωcm^(2).According to the corrosion procedure evaluations,in situ observation revealed that the LZ91 alloy initially experiences pitting,which subsequently develops into cracking.The substantial area coverage of the β-Li phase facilitates the formation of a protective film on the surface,effectively delaying localized corrosion.
基金The financial supports by the Chinese Academy of Sciences(Nos.XDC04030300 and XDB0510303)CAS-HK Joint Laboratory of Nanomaterials and MechanicsShenyang National Laboratory for Materials Science are acknowledged.
文摘Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was applied on a rare-earth addition bearing steel.And rolling contact fatigue behavior of treated samples was compared with that of as-received counterparts at different contacting stresses.The results demonstrated that a 700μm-thick gradient nanostructured surface layer is produced on samples by surface mechanical rolling treatment.The grain size decreases while the microhardness increases gradually with decreasing depth,reaching~23 nm and~10.2 GPa,respectively,at the top surface.Consequently,the rolling contact fatigue property is significantly enhanced.The characteristic life of treated samples is~3.2 times that of untreated counterparts according to Weibull curves at 5.6 GPa.Analyses of fatigue mechanisms demonstrated that the gradient nanostructured surface layer might not only retard material degradation and microcrack formation,but also prolong the steady-state elastic response stage under rolling contact fatigue.
基金supported by the National Key R&D Program of China(2022YFB3803501)the National Natural Science Foundation of China(22179008,22209156)+5 种基金support from the Beijing Nova Program(20230484241)support from the China Postdoctoral Science Foundation(2024M754084)the Postdoctoral Fellowship Program of CPSF(GZB20230931)support from beamline BL08U1A of Shanghai Synchrotron Radiation Facility(2024-SSRF-PT-506950)beamline 1W1B of the Beijing Synchrotron Radiation Facility(2021-BEPC-PT-006276)support from Initial Energy Science&Technology Co.,Ltd(IEST)。
文摘The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).
基金National Natural Science Foundation of China(52171114)。
文摘Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized.
基金supported by the Education and Teaching Research Project of Universities in Fujian Province(FBJY20230167).
文摘The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.
文摘Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to CDs are atomically imprecise and their molecular weight distribution is broad.In this paper,a series of Pluronic-modified CDs were prepared and the structure of the CDs was briefly analyzed.Subsequently,a molecular weight measurement method based on colligative properties was developed,and the correction coefficient in the algorithm was briefly analyzed.The calculated molecular weight was applied to the determination of surface adsorption capacity.This work provided a method for averaging the molecular weight of atomically imprecise particulate materials,which is expected to provide new opportunities in related fields.
基金Introduction of Talent Research Start-up Fund of Anhui University of Science and Technology(2022yjrc35)Colleges and Universities Excellent Young Talents Domestic Visit Research Project of Anhui Province(gxgnfx2022006)。
文摘According to surface morphology,microhardness,X-ray diffraction,and static contact angle experiments,the changes in the surface integrity and corrosion resistance of 6061-T6 aluminum alloy after ultrasonic shot peening(USP)were investigated.Results show that the grain size of the material surface is reduced by 43%,the residual compressive stress has an increasing trend,the roughness and hardness are increased by approximately 211.1%and 35%,respectively.And the static contact angle is increased at first,followed by a slight decrease.Weighing,scanning electron microscope,and energy dispersive spectrometer were used to study the samples after a cyclic corrosion test.Results show that USP reduces the corrosion rate by 41.2%.A model of surface corrosion mechanism of USP is developed,and the mechanism of USP to improve the corrosion resistance of materials is discussed.The introduction of compressive residual stresses,grain refinement,increased grain boundaries,increased hardness,and increased static contact angle are the main factors related to the improvement of corrosion resistance in most materials,while increased roughness tends to weaken surface corrosion resistance.