A coupled thermal-mechanical model of the rotary swaging of pure magnesium was developed using the general finite-element software program MSC/Marc to visualize the effect of axial feeding velocity on the rotary swagi...A coupled thermal-mechanical model of the rotary swaging of pure magnesium was developed using the general finite-element software program MSC/Marc to visualize the effect of axial feeding velocity on the rotary swaging process. The radial displacement occurring in one pulse impact increases in proportion to axial feeding velocity (vax). When the other processing parameters are fixed, the surface roughness of the swaged bar increases with vax and is in parabolic relation with vax. There exists a minimum velocity vax, min below which the decrease of vax will no longer improve the surface roughness. Under the technological conditions of this simulation, when the finial diameter d=6.6 mm, vax, min=1.82 m/min, and when d=7.0 mm, vax, =1.83 m/min. If min Ra=3.2 is required for the end product, then vax, =6.02 m/min is gotten for d=6.6 mm and vax, max max =7.05 m/min for d=7.0mm. The increase of vax has no notable influence on strain distribution along radial direction. The errors between the experimental and simulated height of the spiral spine-like ridges are below 8.0%.展开更多
The precipitation process of Ni-Cr-Al alloy with low Al content was studied at atomic scale based on the microscopicphase-field kinetic model coupled with elastic strain energy.The aim is to investigate the effect of ...The precipitation process of Ni-Cr-Al alloy with low Al content was studied at atomic scale based on the microscopicphase-field kinetic model coupled with elastic strain energy.The aim is to investigate the effect of elastic strain energy onprecipitation mechanism and morphological evolution of the alloy.The simulation results show that in the early stage of precipitation,D022 phase and L12 phase present irregular shape,and they randomly distribute in the matrix.With the progress of aging,L12 phaseand D022 phase change into the quadrate shape and their orientations become more obvious.In the later stage,L12 phase and D022phase present quadrate shape with round corner and align along the[100]and[010]directions,and highly preferential selectedmicrostructure is formed.The mechanism of early precipitation of L12 phase in Ni-17%Cr-7.5%Al(mole fraction)alloy is the mixedstyle of non-classical nucleation growth and spinodal decomposition and the D022 phase is the spinodal decomposition.Themechanisms of early precipitation of L12 phase and D022 phase in Ni-12.5%Cr-7.5%Al alloy are both the non-classical nucleationand growth.The coarsening process follows the rule of preferential selected coarsening.展开更多
Based on the results of triaxial compressive creep tests for five kinds of rock under the different stress loading,unloading and cycle-loading-unloading conditions,the creep deformation is not only a function of stres...Based on the results of triaxial compressive creep tests for five kinds of rock under the different stress loading,unloading and cycle-loading-unloading conditions,the creep deformation is not only a function of stress and time,but also it has the corresponding relations to the triaxial stress-strain curves of rock.The deformation properties of soften-strain,harden-strain and ideal plasticity presented by conventional triaxial compressive test curves under the different stress states were utilized,and the creep characteristics,the creep starting stress and the different entire creep process curves of rock were studied systematically according to creep experiment results,and the relations of the triaxial stress-strain curves to the creeping starting stress,the terminating curve,the different creep processes,and the different creep fracture properties were established.The relations presented in this paper were verified partially by the creep experiment results of five types of rock.展开更多
Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the c...Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the compaction processes are to obtain a compact with the geometrical requirements, without cracks, and with a uniform distribution of density. Design of such proc esses consist, essentially, in determine the sequence and relative displacements of die and punches in order to achieve such goals. A.B. Khoei presented a gener al framework for the finite element simulation of powder forming processes based on the following aspects; a large displacement formulation, centred on a total and updated Lagrangian formulation; an adaptive finite element strategy based on error estimates and automatic remeshing techniques; a cap model based on a hard ening rule in modelling of the highly non-linear behaviour of material; and the use of an efficient contact algorithm in the context of an interface element fo rmulation. In these references, the non-linear behaviour of powder was adequately desc ribed by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a yield surface. In the flow theory of plasticit y, the transition from an elastic state to an elasto-plastic state appears more or less abruptly. For powder material it is very difficult to define the locati on of yield surface, because there is no distinct transition from elastic to ela stic-plastic behaviour. Results of experimental test on some hard met al powder show that the plastic effects were begun immediately upon loading. In such mater ials the domain of the yield surface would collapse to a point, so making the di rection of plastic increment indeterminate, because all directions are normal to a point. Thus, the classical plasticity theory cannot deal with such materials and an advanced constitutive theory is necessary. In the present paper, the constitutive equations of powder materials will be discussed via an endochronic theory of plasticity. This theory provides a unifi ed point of view to describe the elastic-plastic behaviour of material since it places no requirement for a yield surface and a ’loading function’ to disting uish between loading an unloading. Endochronic theory of plasticity has been app lied to a number of metallic materials, concrete and sand, but to the knowledge of authors, no numerical scheme of the model has been applied to powder material . In the present paper, a new approach is developed based on an endochronic rate independent, density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. Although the concept of yield surface has not been explicitly assumed in endochronic theory, it is shown that the cone-cap plasticity yield surface (Fig.1), which is the m ost commonly used plasticity models for describing the behavior of powder materi al can be easily derived as a special case of the proposed endochronic theory. Fig.1 Trace of cone-cap yield function on the meridian pl ane for different relative density As large deformation is observed in powder compaction process, a hypoelastic-pl astic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly s implifies endochronic constitutive relation in finite plasticity. Constitutive e quations of the endochronic theory and their numerical integration are establish ed and procedures for determining material parameters of the model are demonstra ted. Finally, the numerical schemes are examined for efficiency in the model ling of a tip shaped component, as shown in Fig.2. Fig.2 A shaped tip component. a) Geometry, boundary conditio n and finite element mesh; b) density distribution at final stage of展开更多
Structure evolution of an Al-Zn wrought alloy in remelting processing in thestrain induced melt activated (SIMA) serai-solid procedure was observed, and effects of factors, theremelting temperature, the holding time, ...Structure evolution of an Al-Zn wrought alloy in remelting processing in thestrain induced melt activated (SIMA) serai-solid procedure was observed, and effects of factors, theremelting temperature, the holding time, and the compression strain, on structures and grain sizesof the alloy were investigated. The results show that (1) the proper temperature of remelting is inthe range of 610 to 615℃; (2) the grain size in specimen with greater compression strain is smallerthan that with smaller compression strain in condition of the same remelting temperature andholding time, and the grain size in local area with great local equivalent strain is smaller thanthat with small one; (3) liquid occurs in form of cluster in matrix during remelting and itsquantity increases with remelting time increasing; liquid in specimen with great compression strainoccurs earlier than that with small one, and quantity of liquid in the center of specimen withgreater local equivalent strain is greater than that in the two ends of it; (4) distortion energyafter deforming in matrix of the alloy is the significant factor to activate melting of matrix atlocal area with great local equivalent strain.展开更多
In this work, the main reasons for the breakage of 500 kV transmission line are studied. Under low temperature condition, the coverage of the ice results in the disconnection between the aluminum tube and the steel an...In this work, the main reasons for the breakage of 500 kV transmission line are studied. Under low temperature condition, the coverage of the ice results in the disconnection between the aluminum tube and the steel anchor of strain clamp. Using macroscopic analysis, structure stress analysis, force analysis and mechanical property test, the fractured strain clamps are investigated. The crimping of the aluminum tube on the polished rod not on the grooves of the steel anchor leads to the damage of the strain clamps, which is defined as improper crimping. When improper crimping emerges, there will be only friction force between the aluminum tube and the steel anchor without shear force, and the tension of the conductor will be mainly supported by the steel strands which should be supported by both the aluminum tube and steel stands. Therefore, the breaking force of the strain clamp will greatly decrease. The failure analysis helps to promote the proper hydraulic crimping process and the safe operation of the transmission line.展开更多
The hot deformation behavior of AZ80 wrought magnesium alloy was studied in the temperature range of 523-673 K and the strain rate range of 0.01-10 s-1 using hot compression tests.Through the flow stresses behavior,th...The hot deformation behavior of AZ80 wrought magnesium alloy was studied in the temperature range of 523-673 K and the strain rate range of 0.01-10 s-1 using hot compression tests.Through the flow stresses behavior,the processing maps were calculated and analyzed according to the dynamic materials model.The stable,metastable and unstable regimes were clarified.The optimum processing conditions were suggested as following:the DRX regions in Domain #1-0.25,Domain #2-0.25,Domain #1-0.45,Domain #2-0.45,Domain #3-0.45,Domain #1-0.65 and Domain #1-0.85,and the DRV regions in Domain #3-0.25 and Domain #4-0.45.In each "safe" DRX domain,it is preferable to conduct hot working in the small region around efficiency peak point.The strain has a great influence on the processing maps.The whole area of the "safe" domains increases with the increase of true strain from 0.25 to 0.65,while it decreases with the increase of true strain from 0.65 to 0.85.The results of kinetic analysis reveal that the values of apparent activation energy in all the domains are higher than that for self-diffusion in pure magnesium (135kJ/mol),and the deformation mechanism in all the domains is likely to be cross-slip.展开更多
A new Mg−10%Al−1%Zn−1%Si alloy with non-dendritic microstructure was prepared by strain induced melt activation(SIMA)process.The effect of compression ratio on the evolution of semisolid microstructure of the experime...A new Mg−10%Al−1%Zn−1%Si alloy with non-dendritic microstructure was prepared by strain induced melt activation(SIMA)process.The effect of compression ratio on the evolution of semisolid microstructure of the experimental alloy was investigated.The results indicate that the average size ofα-Mg grains decreases and spheroidizing tendency becomes more obvious with the compression ratios increasing from 0 to 40%.In addition,the eutectic Mg2Si phase in the Mg−10%Al−1%Zn−1%Si alloy transforms completely from the initial fishbone shape to globular shape by SIMA process.With the increasing of compression ratio,the morphology and average size of Mg2Si phases do not change obviously.The morphology modification mechanism of Mg2Si phase in Mg−10%Al−1%Zn−1%Si alloy by SIMA process was also studied.展开更多
Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based o...Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5 were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800-850 ℃ and under 0.001-0.1 s-1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu-Cr-Zr alloy are in the temperature range of 800-850 ℃ and the strain rate range of 0.001-0.1 s-1.展开更多
Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement,motion detection and voice recognition.In recent years,many significant improvements had been made to ...Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement,motion detection and voice recognition.In recent years,many significant improvements had been made to enhance the sensor’s performance including sensitivity,flexibility and repeatability.However,it is still extremely complicated and difficult to prepare a patterned sensor directly on a flexible substrate.Herein,inspired by typography,a lowcost,environmentally friendly stamping method for the mass production of transparent conductive carbon nanotube(CNT)film is proposed.In this dry transfer strategy,a porous CNT block was used as both the seal and the ink;and Ecoflex film was served as an object substrate.Welldesigned CNT patterns can be easily fabricated on the polymer substrate by engraving the target pattern on the CNT seal before the stamping process.Moreover,the CNT film can be directly used to fabricate ultrathin(300μm)strain sensor.This strain sensor possesses high sensitivity with a gauge factor(GF)up to 9960 at 85%strain,high stretchability(>200%)and repeatability(>5000 cycles).It has been used to measure pulse signals and detect joint motion,suggesting promising application prospects in flexible and wearable electronic devices.展开更多
The thermal-mechanical coupling finite element method(FEM)was usedto simulate a non-isothermal sheet metal extrusion process. On thebasis of the finite plasticity consistent with multiplicativedecomposition of the def...The thermal-mechanical coupling finite element method(FEM)was usedto simulate a non-isothermal sheet metal extrusion process. On thebasis of the finite plasticity consistent with multiplicativedecomposition of the deformation gradient, the enhanced as- sumedstrain(EAS)FEM was applied to carry out the numerical simulation. Inorder to make the computation reliable ad avoid hour- glass mode inthe EAS element under large compressive strains, an alterative formof the original enhanced deformation gradient was employed. Inaddition, reduced factors were used in the computation of the elementlocal internal parameters and the enhanced part of elementalstiffness.展开更多
In order to research contemporary crustal movement of Antarctica, China has constructed the deformation monitoring network in the Fildes Strait region,West Antarctica, monitored the network by using DI 20 geodimeter...In order to research contemporary crustal movement of Antarctica, China has constructed the deformation monitoring network in the Fildes Strait region,West Antarctica, monitored the network by using DI 20 geodimeter and GPS instruments, and participated the Antarctic GPS Campaign Observation organized by SCAR as well. During mathematics processing of crustal horizontal deformation observations,a method to bring deformation parameters into the error equations of observations is discussed in this paper. Several classical deformation models,such as rigid body displacement and strain,are introduced. By analyzing the reference datum of static and dynamic geodetic network,the method is developed to set up different additional weight matrix for every different kind of parameter. A series of programs are developed to implementing the method mentioned above and the analysis of West Antarctic Fildes Strait deformation monitoring network. Discussion is also made of GPS monitoring data by using the principle of monitoring network strain analysis in the paper. The research results indicate that the displacement did occur in Fildes rift region,but the displacement was not large,just a slight rift shear movement.展开更多
Due to its nutritional values, cassava has become an unavailable food and is one of the essential foods in the Republic of Congo. Fermentation of tubers is still traditional. Fiftyrod-shaped spore-forming bacteria wer...Due to its nutritional values, cassava has become an unavailable food and is one of the essential foods in the Republic of Congo. Fermentation of tubers is still traditional. Fiftyrod-shaped spore-forming bacteria were screened and carried out in batch mode for the fermentation abilities of cassava tubers in order to develop biotechnological starter. The Penetrometry Index (PI) has been used to screen bacteria and 16SrRNA as well as <i>fibE</i>one step multiplex PCR which were used to molecularly identify isolates. Emulsification Index, Proteolytic as well as amylolytic, and cellulolytic activities of some strains were quantitatively evaluated for prooving orgaleptic characterics. As results <i>Bacillus subtilis</i> (MT994787), <i>Bacillus subtillis</i> (MT994789), <i>Bacillus tequilensis</i> (MT994788), <i>Bacillus safensis</i>, and <i>Bacillus subtilis</i> have been identified. Single isolates were able to ferment tubers in 48 h and 72 hours meanwhile <i>Bacillus</i> consortia were able to shift fermentation of tubers from 48 hours to 24 hours. The consortium could be used as the major bacterial starters. Strains were associated with the ability to secrete biomolecules including biosurfactants, protease, amylase and cellulase.展开更多
The quantitative analysis of uplift process of the Qinghai—Tibet plateau is a key to deepen the study of uplift mechanism and dynamic model, for this, numerical simulate was done to the whole process of uplift of the...The quantitative analysis of uplift process of the Qinghai—Tibet plateau is a key to deepen the study of uplift mechanism and dynamic model, for this, numerical simulate was done to the whole process of uplift of the Qinghai—Tibet plateau.1 Geological model According to the tectonic evolution and lithospheric structure, continental crust in the Qinghai—Tibet plateau in profile is divided into sedimentary cover, crystalline rock formation and lower crust and composed of Kunlun, Bayan Har, Qiangtang, Gangdise and Himalaya blocks on the plane. Layer or block is bounded the detachment layer or large fault. On the basis of the uplift characteristics, the calculated time limit is in the Cenozoic since 65Ma, roughly four stages, i.e., 65 to 40Ma, 40 to 20Ma, 20 to 3Ma and 3Ma to now. Mesh profile used Yadong—Golmud Geoscience transect.展开更多
基金Project(98009999200301) supported by the Ministry of Science and Technology of China
文摘A coupled thermal-mechanical model of the rotary swaging of pure magnesium was developed using the general finite-element software program MSC/Marc to visualize the effect of axial feeding velocity on the rotary swaging process. The radial displacement occurring in one pulse impact increases in proportion to axial feeding velocity (vax). When the other processing parameters are fixed, the surface roughness of the swaged bar increases with vax and is in parabolic relation with vax. There exists a minimum velocity vax, min below which the decrease of vax will no longer improve the surface roughness. Under the technological conditions of this simulation, when the finial diameter d=6.6 mm, vax, min=1.82 m/min, and when d=7.0 mm, vax, =1.83 m/min. If min Ra=3.2 is required for the end product, then vax, =6.02 m/min is gotten for d=6.6 mm and vax, max max =7.05 m/min for d=7.0mm. The increase of vax has no notable influence on strain distribution along radial direction. The errors between the experimental and simulated height of the spiral spine-like ridges are below 8.0%.
基金Projects(50671084,50071046)supported by the National Natural Science Foundation of ChinaProject(2002AA331051)supported by the National Hi-Tech Research Development Program of China
文摘The precipitation process of Ni-Cr-Al alloy with low Al content was studied at atomic scale based on the microscopicphase-field kinetic model coupled with elastic strain energy.The aim is to investigate the effect of elastic strain energy onprecipitation mechanism and morphological evolution of the alloy.The simulation results show that in the early stage of precipitation,D022 phase and L12 phase present irregular shape,and they randomly distribute in the matrix.With the progress of aging,L12 phaseand D022 phase change into the quadrate shape and their orientations become more obvious.In the later stage,L12 phase and D022phase present quadrate shape with round corner and align along the[100]and[010]directions,and highly preferential selectedmicrostructure is formed.The mechanism of early precipitation of L12 phase in Ni-17%Cr-7.5%Al(mole fraction)alloy is the mixedstyle of non-classical nucleation growth and spinodal decomposition and the D022 phase is the spinodal decomposition.Themechanisms of early precipitation of L12 phase and D022 phase in Ni-12.5%Cr-7.5%Al alloy are both the non-classical nucleationand growth.The coarsening process follows the rule of preferential selected coarsening.
基金Project(50774090) supported by the National Natural Science Foundation of China
文摘Based on the results of triaxial compressive creep tests for five kinds of rock under the different stress loading,unloading and cycle-loading-unloading conditions,the creep deformation is not only a function of stress and time,but also it has the corresponding relations to the triaxial stress-strain curves of rock.The deformation properties of soften-strain,harden-strain and ideal plasticity presented by conventional triaxial compressive test curves under the different stress states were utilized,and the creep characteristics,the creep starting stress and the different entire creep process curves of rock were studied systematically according to creep experiment results,and the relations of the triaxial stress-strain curves to the creeping starting stress,the terminating curve,the different creep processes,and the different creep fracture properties were established.The relations presented in this paper were verified partially by the creep experiment results of five types of rock.
文摘Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the compaction processes are to obtain a compact with the geometrical requirements, without cracks, and with a uniform distribution of density. Design of such proc esses consist, essentially, in determine the sequence and relative displacements of die and punches in order to achieve such goals. A.B. Khoei presented a gener al framework for the finite element simulation of powder forming processes based on the following aspects; a large displacement formulation, centred on a total and updated Lagrangian formulation; an adaptive finite element strategy based on error estimates and automatic remeshing techniques; a cap model based on a hard ening rule in modelling of the highly non-linear behaviour of material; and the use of an efficient contact algorithm in the context of an interface element fo rmulation. In these references, the non-linear behaviour of powder was adequately desc ribed by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a yield surface. In the flow theory of plasticit y, the transition from an elastic state to an elasto-plastic state appears more or less abruptly. For powder material it is very difficult to define the locati on of yield surface, because there is no distinct transition from elastic to ela stic-plastic behaviour. Results of experimental test on some hard met al powder show that the plastic effects were begun immediately upon loading. In such mater ials the domain of the yield surface would collapse to a point, so making the di rection of plastic increment indeterminate, because all directions are normal to a point. Thus, the classical plasticity theory cannot deal with such materials and an advanced constitutive theory is necessary. In the present paper, the constitutive equations of powder materials will be discussed via an endochronic theory of plasticity. This theory provides a unifi ed point of view to describe the elastic-plastic behaviour of material since it places no requirement for a yield surface and a ’loading function’ to disting uish between loading an unloading. Endochronic theory of plasticity has been app lied to a number of metallic materials, concrete and sand, but to the knowledge of authors, no numerical scheme of the model has been applied to powder material . In the present paper, a new approach is developed based on an endochronic rate independent, density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. Although the concept of yield surface has not been explicitly assumed in endochronic theory, it is shown that the cone-cap plasticity yield surface (Fig.1), which is the m ost commonly used plasticity models for describing the behavior of powder materi al can be easily derived as a special case of the proposed endochronic theory. Fig.1 Trace of cone-cap yield function on the meridian pl ane for different relative density As large deformation is observed in powder compaction process, a hypoelastic-pl astic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly s implifies endochronic constitutive relation in finite plasticity. Constitutive e quations of the endochronic theory and their numerical integration are establish ed and procedures for determining material parameters of the model are demonstra ted. Finally, the numerical schemes are examined for efficiency in the model ling of a tip shaped component, as shown in Fig.2. Fig.2 A shaped tip component. a) Geometry, boundary conditio n and finite element mesh; b) density distribution at final stage of
文摘Structure evolution of an Al-Zn wrought alloy in remelting processing in thestrain induced melt activated (SIMA) serai-solid procedure was observed, and effects of factors, theremelting temperature, the holding time, and the compression strain, on structures and grain sizesof the alloy were investigated. The results show that (1) the proper temperature of remelting is inthe range of 610 to 615℃; (2) the grain size in specimen with greater compression strain is smallerthan that with smaller compression strain in condition of the same remelting temperature andholding time, and the grain size in local area with great local equivalent strain is smaller thanthat with small one; (3) liquid occurs in form of cluster in matrix during remelting and itsquantity increases with remelting time increasing; liquid in specimen with great compression strainoccurs earlier than that with small one, and quantity of liquid in the center of specimen withgreater local equivalent strain is greater than that in the two ends of it; (4) distortion energyafter deforming in matrix of the alloy is the significant factor to activate melting of matrix atlocal area with great local equivalent strain.
文摘In this work, the main reasons for the breakage of 500 kV transmission line are studied. Under low temperature condition, the coverage of the ice results in the disconnection between the aluminum tube and the steel anchor of strain clamp. Using macroscopic analysis, structure stress analysis, force analysis and mechanical property test, the fractured strain clamps are investigated. The crimping of the aluminum tube on the polished rod not on the grooves of the steel anchor leads to the damage of the strain clamps, which is defined as improper crimping. When improper crimping emerges, there will be only friction force between the aluminum tube and the steel anchor without shear force, and the tension of the conductor will be mainly supported by the steel strands which should be supported by both the aluminum tube and steel stands. Therefore, the breaking force of the strain clamp will greatly decrease. The failure analysis helps to promote the proper hydraulic crimping process and the safe operation of the transmission line.
基金Project(2012ZX04010081)supported by the National Key Technologies R&D Program of ChinaProject(cstc2009aa3012-1)supported by the Science and Technology Committee of Chongqing,ChinaProject(CDJZR12130045)supported by Fundamental Research Funds for the Central Universities,China
文摘The hot deformation behavior of AZ80 wrought magnesium alloy was studied in the temperature range of 523-673 K and the strain rate range of 0.01-10 s-1 using hot compression tests.Through the flow stresses behavior,the processing maps were calculated and analyzed according to the dynamic materials model.The stable,metastable and unstable regimes were clarified.The optimum processing conditions were suggested as following:the DRX regions in Domain #1-0.25,Domain #2-0.25,Domain #1-0.45,Domain #2-0.45,Domain #3-0.45,Domain #1-0.65 and Domain #1-0.85,and the DRV regions in Domain #3-0.25 and Domain #4-0.45.In each "safe" DRX domain,it is preferable to conduct hot working in the small region around efficiency peak point.The strain has a great influence on the processing maps.The whole area of the "safe" domains increases with the increase of true strain from 0.25 to 0.65,while it decreases with the increase of true strain from 0.65 to 0.85.The results of kinetic analysis reveal that the values of apparent activation energy in all the domains are higher than that for self-diffusion in pure magnesium (135kJ/mol),and the deformation mechanism in all the domains is likely to be cross-slip.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.41807235,50674038).
文摘A new Mg−10%Al−1%Zn−1%Si alloy with non-dendritic microstructure was prepared by strain induced melt activation(SIMA)process.The effect of compression ratio on the evolution of semisolid microstructure of the experimental alloy was investigated.The results indicate that the average size ofα-Mg grains decreases and spheroidizing tendency becomes more obvious with the compression ratios increasing from 0 to 40%.In addition,the eutectic Mg2Si phase in the Mg−10%Al−1%Zn−1%Si alloy transforms completely from the initial fishbone shape to globular shape by SIMA process.With the increasing of compression ratio,the morphology and average size of Mg2Si phases do not change obviously.The morphology modification mechanism of Mg2Si phase in Mg−10%Al−1%Zn−1%Si alloy by SIMA process was also studied.
基金financially supported by the National Natural Science Foundation of China(No.51101052)the National Science Foundation(No.IRES 1358088)
文摘Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5 were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800-850 ℃ and under 0.001-0.1 s-1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu-Cr-Zr alloy are in the temperature range of 800-850 ℃ and the strain rate range of 0.001-0.1 s-1.
基金financially supported by National Natural Science Foundation of China(Grant No.51772335)Guangdong Youth Top-notch Talent Support Program(No.2015TQ01C201)the Fundamental Research Funds for the Central Universities.
文摘Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement,motion detection and voice recognition.In recent years,many significant improvements had been made to enhance the sensor’s performance including sensitivity,flexibility and repeatability.However,it is still extremely complicated and difficult to prepare a patterned sensor directly on a flexible substrate.Herein,inspired by typography,a lowcost,environmentally friendly stamping method for the mass production of transparent conductive carbon nanotube(CNT)film is proposed.In this dry transfer strategy,a porous CNT block was used as both the seal and the ink;and Ecoflex film was served as an object substrate.Welldesigned CNT patterns can be easily fabricated on the polymer substrate by engraving the target pattern on the CNT seal before the stamping process.Moreover,the CNT film can be directly used to fabricate ultrathin(300μm)strain sensor.This strain sensor possesses high sensitivity with a gauge factor(GF)up to 9960 at 85%strain,high stretchability(>200%)and repeatability(>5000 cycles).It has been used to measure pulse signals and detect joint motion,suggesting promising application prospects in flexible and wearable electronic devices.
基金[This work was financially supported by a research grant from the Hong Kong Polytechnic University (No.G-V694).]
文摘The thermal-mechanical coupling finite element method(FEM)was usedto simulate a non-isothermal sheet metal extrusion process. On thebasis of the finite plasticity consistent with multiplicativedecomposition of the deformation gradient, the enhanced as- sumedstrain(EAS)FEM was applied to carry out the numerical simulation. Inorder to make the computation reliable ad avoid hour- glass mode inthe EAS element under large compressive strains, an alterative formof the original enhanced deformation gradient was employed. Inaddition, reduced factors were used in the computation of the elementlocal internal parameters and the enhanced part of elementalstiffness.
文摘In order to research contemporary crustal movement of Antarctica, China has constructed the deformation monitoring network in the Fildes Strait region,West Antarctica, monitored the network by using DI 20 geodimeter and GPS instruments, and participated the Antarctic GPS Campaign Observation organized by SCAR as well. During mathematics processing of crustal horizontal deformation observations,a method to bring deformation parameters into the error equations of observations is discussed in this paper. Several classical deformation models,such as rigid body displacement and strain,are introduced. By analyzing the reference datum of static and dynamic geodetic network,the method is developed to set up different additional weight matrix for every different kind of parameter. A series of programs are developed to implementing the method mentioned above and the analysis of West Antarctic Fildes Strait deformation monitoring network. Discussion is also made of GPS monitoring data by using the principle of monitoring network strain analysis in the paper. The research results indicate that the displacement did occur in Fildes rift region,but the displacement was not large,just a slight rift shear movement.
文摘Due to its nutritional values, cassava has become an unavailable food and is one of the essential foods in the Republic of Congo. Fermentation of tubers is still traditional. Fiftyrod-shaped spore-forming bacteria were screened and carried out in batch mode for the fermentation abilities of cassava tubers in order to develop biotechnological starter. The Penetrometry Index (PI) has been used to screen bacteria and 16SrRNA as well as <i>fibE</i>one step multiplex PCR which were used to molecularly identify isolates. Emulsification Index, Proteolytic as well as amylolytic, and cellulolytic activities of some strains were quantitatively evaluated for prooving orgaleptic characterics. As results <i>Bacillus subtilis</i> (MT994787), <i>Bacillus subtillis</i> (MT994789), <i>Bacillus tequilensis</i> (MT994788), <i>Bacillus safensis</i>, and <i>Bacillus subtilis</i> have been identified. Single isolates were able to ferment tubers in 48 h and 72 hours meanwhile <i>Bacillus</i> consortia were able to shift fermentation of tubers from 48 hours to 24 hours. The consortium could be used as the major bacterial starters. Strains were associated with the ability to secrete biomolecules including biosurfactants, protease, amylase and cellulase.
文摘The quantitative analysis of uplift process of the Qinghai—Tibet plateau is a key to deepen the study of uplift mechanism and dynamic model, for this, numerical simulate was done to the whole process of uplift of the Qinghai—Tibet plateau.1 Geological model According to the tectonic evolution and lithospheric structure, continental crust in the Qinghai—Tibet plateau in profile is divided into sedimentary cover, crystalline rock formation and lower crust and composed of Kunlun, Bayan Har, Qiangtang, Gangdise and Himalaya blocks on the plane. Layer or block is bounded the detachment layer or large fault. On the basis of the uplift characteristics, the calculated time limit is in the Cenozoic since 65Ma, roughly four stages, i.e., 65 to 40Ma, 40 to 20Ma, 20 to 3Ma and 3Ma to now. Mesh profile used Yadong—Golmud Geoscience transect.