Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we i...Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.展开更多
In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an opt...In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.展开更多
Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states pr...Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges.Here,we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC.The splitter is compact and configurable,has high trans-mission efficiency,and allows for multi-channel utilization,crosstalk-proof,and robust against defects and obstacles.This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC.When we combine two rectangular antichiral GPCs holding left-and right-propagating antichiral one-way edge states respectively,bidirectionally radiating one-way edge states at two paral-lel zigzag edges can be achieved.Our observations can enrich the understanding of fundamental physics and expand to-pological photonic applications.展开更多
Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of ...Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle.展开更多
Multiphoton entanglement with high information capacity plays an essential role in quantum information processing.The appearance of parallel beam splitting(BS)in a gradient metasurface provides the chance to prepare t...Multiphoton entanglement with high information capacity plays an essential role in quantum information processing.The appearance of parallel beam splitting(BS)in a gradient metasurface provides the chance to prepare the multiphoton entanglement in one step.Here,we use a single metasurface to construct multiphoton path-polarization entanglement.Based on the parallel BS property,entanglement among N unentangled photons is created after they pass through a gradient metasurface.Also,with this ability,entanglement fusion among several pairs of entangled photons is set up,which can greatly enlarge the entanglement dimension.These theoretical results pave the way for manipulating metasurface-based multiphoton entanglement,which holds great promise for ultracompact on-chip quantum information processing.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2022YFF0709103,2022YFA1603601,2021YFF0601203,and 2021YFA1600703)the National Natural Science Foundation of China (Grant No.81430087)the Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences,Shanghai Branch (Grant No.JCYJ-SHFY-2021-010)。
文摘Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB301801)the National Natural Science Foundation of China (GrantNos. 91233202,10904099,11204188,61205097,and 11174211)
文摘In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.
基金the National Natural Science Foundation of China(11974119)Science and Technology Project of Guangdong(2020B010190001)+1 种基金Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06C594)National Key R&D Program of China(2018YFA 0306200).
文摘Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges.Here,we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC.The splitter is compact and configurable,has high trans-mission efficiency,and allows for multi-channel utilization,crosstalk-proof,and robust against defects and obstacles.This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC.When we combine two rectangular antichiral GPCs holding left-and right-propagating antichiral one-way edge states respectively,bidirectionally radiating one-way edge states at two paral-lel zigzag edges can be achieved.Our observations can enrich the understanding of fundamental physics and expand to-pological photonic applications.
基金Project supported by Akdeniz University Scientific Research Projects Coordination Unit
文摘Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle.
基金supported by the National Natural Science Foundation of China(Grant Nos.12474370,11974032,12161141010,and T2325022)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301500).
文摘Multiphoton entanglement with high information capacity plays an essential role in quantum information processing.The appearance of parallel beam splitting(BS)in a gradient metasurface provides the chance to prepare the multiphoton entanglement in one step.Here,we use a single metasurface to construct multiphoton path-polarization entanglement.Based on the parallel BS property,entanglement among N unentangled photons is created after they pass through a gradient metasurface.Also,with this ability,entanglement fusion among several pairs of entangled photons is set up,which can greatly enlarge the entanglement dimension.These theoretical results pave the way for manipulating metasurface-based multiphoton entanglement,which holds great promise for ultracompact on-chip quantum information processing.