We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for s...We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for some positive number a.展开更多
In this paper,with the idea of weighted sharing values,we deal with the problem of uniqueness of mesomorphic functions sharing three weighted values.We obtain some theorems which improve the results of H X Yi and W R ...In this paper,with the idea of weighted sharing values,we deal with the problem of uniqueness of mesomorphic functions sharing three weighted values.We obtain some theorems which improve the results of H X Yi and W R L.展开更多
In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and ...In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and their derivatives, we obtain some uniqueness theorems of algebroid functions sharing values with their derivatives, which extend 3 IM shared values theorem of nonconstant meromorphic functions and their derivatives obtained by Mues-Steinmetz and Gundersen.展开更多
Let f and g be two nonconstant meromorphic functions,and n be a positive integer.If f^(n)(z)and g^(n)(z)share 1 CM(counting multiplicities),f(z)and g(z)share∞IM(ignoring multiplicities),and N(r,1f)+N(r,1g)=S(r,f)+S(r...Let f and g be two nonconstant meromorphic functions,and n be a positive integer.If f^(n)(z)and g^(n)(z)share 1 CM(counting multiplicities),f(z)and g(z)share∞IM(ignoring multiplicities),and N(r,1f)+N(r,1g)=S(r,f)+S(r,g),then either f(z)≡tg(z)or f(z)g(z)≡t,where t^(n)=1.As an application,shared values problems of a meromorphic function related to its shifts and difference operators are also investigated.展开更多
On the morning of May 31st,the parallel forum"Ecological Actions to Carry Forward the Shared Values of Mankind,"as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Du...On the morning of May 31st,the parallel forum"Ecological Actions to Carry Forward the Shared Values of Mankind,"as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.More than 50 experts and scholars from different countries,including China,Kenya and Japan,engaged in indepth discussions on the theme.展开更多
On the afternoon of May 3Oth,the parallel forum"Strengthening the Judicial Foundations of Shared Values of Mankind,"as a component of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was...On the afternoon of May 3Oth,the parallel forum"Strengthening the Judicial Foundations of Shared Values of Mankind,"as a component of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.More than 50 experts and scholars from nine countries,including China,Germany and the United Kingdom,engaged in in-depth discussions on the topic.展开更多
Throughout this work,we explore the uniqueness properties of meromorphic functions concerning their interactions with complex differential-difference polynomial.Under the condition of finite order,we establish three d...Throughout this work,we explore the uniqueness properties of meromorphic functions concerning their interactions with complex differential-difference polynomial.Under the condition of finite order,we establish three distinct uniqueness results for a meromorphic function f associated with the differential-difference polynomial L_(η)^(n)f=Σ_(k=0)^(n)a_(k)f (z+k_(η))+a_(-1)f′.These results lead to a refined characterization of f (z)≡L_(η)^(n)f (z).Several illustrative examples are provided to demonstrate the sharpness and precision of the results obtained in this study.展开更多
The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 ...The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 or δ 2(0,f)+δ 2(0,g)+δ 2(∞,f)+δ 2(∞,g)=3, and E(1,f)=E(1,g) then f(z),g(z) must be one of five cases.展开更多
A uniqueness theorem for entire functions sharing one finite complex value with weight two is proved by using Nevanlinna theory , and this improves the result of Fang and Hua.
We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H...We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].展开更多
In this paper, we study the relations between meromorphic functions and their derivatives with one shared values, and obtain a concrete expression of meromorphic functions of zero order that share one value CM with th...In this paper, we study the relations between meromorphic functions and their derivatives with one shared values, and obtain a concrete expression of meromorphic functions of zero order that share one value CM with their derivatives by a new method. Our main result is the supplementary of a related result due to Li and Yi(Li X M, Yi H X. Uniqueness of meromorphic functions sharing a meromorphic function of a small order with their derivatives. Ann. Polon. Math., 2010, 98(3):201–219).展开更多
Recent developments in heterogeneous identity federation systems have heightened the need for the related trust management system.The trust management system evaluates,manages,and shares users’trust values.The servic...Recent developments in heterogeneous identity federation systems have heightened the need for the related trust management system.The trust management system evaluates,manages,and shares users’trust values.The service provider(SP)members of the federation system rely on users’trust values to determine which type and quality of service will be provided to the users.While identity federation systems have the potential to help federated users save time and energy and improve service experience,the benefits also come with significant privacy risks.So far,there has been little discussion about the privacy protection of users in heterogeneous identity federation systems.In this paper,we propose a trust value sharing scheme based on a proxy ring signature for the trust management system in heterogeneous identity federation topologies.The ring signature schemes can ensure the validity of the data and hide the original signer,thereby protecting privacy.Moreover,no group manager participating in the ring signature,which naturally matches with our decentralized heterogeneous identity federation topologies.The proxy signature can reduce the workload of the private key owner.The proposed scheme shortens the calculation time for verifying the signature and then reduces the overall time consumption in the process of trust sharing.Our studies prove that the proposed scheme is privacy-preserving,efficient,and effective.展开更多
In this paper, we investigate uniqueness problems of differential polynomials of meromorphic functions. Let a, b be non-zero constants and let n, k be positive integers satisfying n ≥ 3k + 12. If f^n+ af^(k)and ...In this paper, we investigate uniqueness problems of differential polynomials of meromorphic functions. Let a, b be non-zero constants and let n, k be positive integers satisfying n ≥ 3k + 12. If f^n+ af^(k)and g^n+ ag^(k)share b CM and the b-points of f^n+ af^(k)are not the zeros of f and g, then f and g are either equal or closely related.展开更多
Let K be a complete algebraically closed p-adic field of characteristic zero. We apply results in algebraic geometry and a new Nevanlinna theorem for p-adic meromorphic functions in order to prove results of uniquenes...Let K be a complete algebraically closed p-adic field of characteristic zero. We apply results in algebraic geometry and a new Nevanlinna theorem for p-adic meromorphic functions in order to prove results of uniqueness in value sharing prob-lems, both on K and on C. Let P be a polynomial of uniqueness for meromorphic functions in K or C or in an open disk. Let f , g be two transcendental meromorphic functions in the whole field K or in C or meromorphic functions in an open disk of K that are not quotients of bounded analytic functions. We show that if f′P′( f ) and g′P′(g) share a small function α counting multiplicity, then f=g, provided that the multiplicity order of zeros of P′satisfy certain inequalities. A breakthrough in this pa-per consists of replacing inequalities n≥k+2 or n≥k+3 used in previous papers by Hypothesis (G). In the p-adic context, another consists of giving a lower bound for a sum of q counting functions of zeros with (q-1) times the characteristic function of the considered meromorphic function.展开更多
Due to the fact that consumers'privacy data sharing has multifaceted and complex effects on the e-commerce platform and its two sided agents,consumers and sellers,a game-theoretic model in a monopoly e-market is s...Due to the fact that consumers'privacy data sharing has multifaceted and complex effects on the e-commerce platform and its two sided agents,consumers and sellers,a game-theoretic model in a monopoly e-market is set up to study the equilibrium strategies of the three agents(the platform,the seller on it and consumers)under privacy data sharing.Equilibrium decisions show that after sharing consumers'privacy data once,the platform can collect more privacy data from consumers.Meanwhile,privacy data sharing pushes the seller to reduce the product price.Moreover,the platform will increase the transaction fee if the privacy data sharing value is high.It is also indicated that privacy data sharing always benefits consumers and the seller.However,the platform's profit decreases if the privacy data sharing value is low and the privacy data sharing level is high.Finally,an extended model considering an incomplete information game among the agents is discussed.The results show that both the platform and the seller cannot obtain a high profit from privacy data sharing.Factors including the seller's possibility to buy privacy data,the privacy data sharing value and privacy data sharing level affect the two agents'payoffs.If the platform wishes to benefit from privacy data sharing,it should increase the possibility of the seller to buy privacy data or increase the privacy data sharing value.展开更多
In this paper,we obtain some normality criteria for families of meromorphic functions concering shared values,which extends the related results of Schwick,and SauerSchweizer,and can be viewed as a complement of the re...In this paper,we obtain some normality criteria for families of meromorphic functions concering shared values,which extends the related results of Schwick,and SauerSchweizer,and can be viewed as a complement of the related results due to Pang-Zalcman,Xu-Fang.展开更多
Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a w...Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.展开更多
We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of ...In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).展开更多
基金The NSF(11301076)of Chinathe NSF(2014J01004,2018J01658)of Fujian Province of China
文摘We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for some positive number a.
文摘In this paper,with the idea of weighted sharing values,we deal with the problem of uniqueness of mesomorphic functions sharing three weighted values.We obtain some theorems which improve the results of H X Yi and W R L.
基金supported by NSF of China (11209119511171119+1 种基金11101096)the STP of Education Department of Jiangxi Province,China (GJJ12179)
文摘In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and their derivatives, we obtain some uniqueness theorems of algebroid functions sharing values with their derivatives, which extend 3 IM shared values theorem of nonconstant meromorphic functions and their derivatives obtained by Mues-Steinmetz and Gundersen.
基金Supported by the National Natural Science Foundation of China(11971344)。
文摘Let f and g be two nonconstant meromorphic functions,and n be a positive integer.If f^(n)(z)and g^(n)(z)share 1 CM(counting multiplicities),f(z)and g(z)share∞IM(ignoring multiplicities),and N(r,1f)+N(r,1g)=S(r,f)+S(r,g),then either f(z)≡tg(z)or f(z)g(z)≡t,where t^(n)=1.As an application,shared values problems of a meromorphic function related to its shifts and difference operators are also investigated.
文摘On the morning of May 31st,the parallel forum"Ecological Actions to Carry Forward the Shared Values of Mankind,"as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.More than 50 experts and scholars from different countries,including China,Kenya and Japan,engaged in indepth discussions on the theme.
文摘On the afternoon of May 3Oth,the parallel forum"Strengthening the Judicial Foundations of Shared Values of Mankind,"as a component of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.More than 50 experts and scholars from nine countries,including China,Germany and the United Kingdom,engaged in in-depth discussions on the topic.
基金Supported by the National Natural Science Foundation of China (Grant No.12161074)the Talent Introduction Research Foundation of Suqian University (Grant No.106-CK00042/028)+1 种基金Suqian Sci&Tech Program (Grant No.M202206)Sponsored by Qing Lan Project of Jiangsu Province and Suqian Talent Xiongying Plan of Suqian。
文摘Throughout this work,we explore the uniqueness properties of meromorphic functions concerning their interactions with complex differential-difference polynomial.Under the condition of finite order,we establish three distinct uniqueness results for a meromorphic function f associated with the differential-difference polynomial L_(η)^(n)f=Σ_(k=0)^(n)a_(k)f (z+k_(η))+a_(-1)f′.These results lead to a refined characterization of f (z)≡L_(η)^(n)f (z).Several illustrative examples are provided to demonstrate the sharpness and precision of the results obtained in this study.
文摘The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 or δ 2(0,f)+δ 2(0,g)+δ 2(∞,f)+δ 2(∞,g)=3, and E(1,f)=E(1,g) then f(z),g(z) must be one of five cases.
文摘A uniqueness theorem for entire functions sharing one finite complex value with weight two is proved by using Nevanlinna theory , and this improves the result of Fang and Hua.
基金supported by NSF of Fujian Province,China(S0750013),supported by NSF of Fujian Province,China(2008J0190)the Research Foundation of Ningde Normal University(2008J001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].
文摘In this paper, we study the relations between meromorphic functions and their derivatives with one shared values, and obtain a concrete expression of meromorphic functions of zero order that share one value CM with their derivatives by a new method. Our main result is the supplementary of a related result due to Li and Yi(Li X M, Yi H X. Uniqueness of meromorphic functions sharing a meromorphic function of a small order with their derivatives. Ann. Polon. Math., 2010, 98(3):201–219).
基金This work is supported by the National Key Research and Development Project of China(No.2017YFB0802302)the Key Research and Development Project of Sichuan Province(Nos.20ZDYF2324,2019ZYD027,2018TJPT0012)+1 种基金the Science and Technology Support Project of Sichuan Province(Nos.2018GZ0204,2016FZ0112)the Science and Technology Project of Chengdu(No.2017-RK00-00103-ZF).
文摘Recent developments in heterogeneous identity federation systems have heightened the need for the related trust management system.The trust management system evaluates,manages,and shares users’trust values.The service provider(SP)members of the federation system rely on users’trust values to determine which type and quality of service will be provided to the users.While identity federation systems have the potential to help federated users save time and energy and improve service experience,the benefits also come with significant privacy risks.So far,there has been little discussion about the privacy protection of users in heterogeneous identity federation systems.In this paper,we propose a trust value sharing scheme based on a proxy ring signature for the trust management system in heterogeneous identity federation topologies.The ring signature schemes can ensure the validity of the data and hide the original signer,thereby protecting privacy.Moreover,no group manager participating in the ring signature,which naturally matches with our decentralized heterogeneous identity federation topologies.The proxy signature can reduce the workload of the private key owner.The proposed scheme shortens the calculation time for verifying the signature and then reduces the overall time consumption in the process of trust sharing.Our studies prove that the proposed scheme is privacy-preserving,efficient,and effective.
基金supported by the NNSF(11201014,11171013,11126036,11371225)the YWF-14-SXXY-008,YWF-ZY-302854 of Beihang Universitysupported by the youth talent program of Beijing(29201443)
文摘In this paper, we investigate uniqueness problems of differential polynomials of meromorphic functions. Let a, b be non-zero constants and let n, k be positive integers satisfying n ≥ 3k + 12. If f^n+ af^(k)and g^n+ ag^(k)share b CM and the b-points of f^n+ af^(k)are not the zeros of f and g, then f and g are either equal or closely related.
基金Partially funded by the research project CONICYT (Inserción de nuevos investigadores en la academia, NO. 79090014) from the Chilean Government
文摘Let K be a complete algebraically closed p-adic field of characteristic zero. We apply results in algebraic geometry and a new Nevanlinna theorem for p-adic meromorphic functions in order to prove results of uniqueness in value sharing prob-lems, both on K and on C. Let P be a polynomial of uniqueness for meromorphic functions in K or C or in an open disk. Let f , g be two transcendental meromorphic functions in the whole field K or in C or meromorphic functions in an open disk of K that are not quotients of bounded analytic functions. We show that if f′P′( f ) and g′P′(g) share a small function α counting multiplicity, then f=g, provided that the multiplicity order of zeros of P′satisfy certain inequalities. A breakthrough in this pa-per consists of replacing inequalities n≥k+2 or n≥k+3 used in previous papers by Hypothesis (G). In the p-adic context, another consists of giving a lower bound for a sum of q counting functions of zeros with (q-1) times the characteristic function of the considered meromorphic function.
基金The National Social Science Foundation of China(No.17BGL196)。
文摘Due to the fact that consumers'privacy data sharing has multifaceted and complex effects on the e-commerce platform and its two sided agents,consumers and sellers,a game-theoretic model in a monopoly e-market is set up to study the equilibrium strategies of the three agents(the platform,the seller on it and consumers)under privacy data sharing.Equilibrium decisions show that after sharing consumers'privacy data once,the platform can collect more privacy data from consumers.Meanwhile,privacy data sharing pushes the seller to reduce the product price.Moreover,the platform will increase the transaction fee if the privacy data sharing value is high.It is also indicated that privacy data sharing always benefits consumers and the seller.However,the platform's profit decreases if the privacy data sharing value is low and the privacy data sharing level is high.Finally,an extended model considering an incomplete information game among the agents is discussed.The results show that both the platform and the seller cannot obtain a high profit from privacy data sharing.Factors including the seller's possibility to buy privacy data,the privacy data sharing value and privacy data sharing level affect the two agents'payoffs.If the platform wishes to benefit from privacy data sharing,it should increase the possibility of the seller to buy privacy data or increase the privacy data sharing value.
基金Supported by National Natural Science of China(Grant No.11471163).
文摘In this paper,we obtain some normality criteria for families of meromorphic functions concering shared values,which extends the related results of Schwick,and SauerSchweizer,and can be viewed as a complement of the related results due to Pang-Zalcman,Xu-Fang.
基金The first author is supported in part by the Post Doctoral Fellowship at Shandong University.The second author is supported by the national Nature Science Foundation of China (10371065).
文摘Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.
基金supported by Nature Science Foundation of China(11461070),supported by Nature Science Foundation of China(11271227)PCSIRT(IRT1264)
文摘We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
基金supported by the Natural Science Foundation of Guangdong Province in China(2014A030313422,2016A030310106,2016A030313745)
文摘In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).